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Time-We superposition in a vortex growth mechanism of a 4:1 planar contraction flow
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Introduction

Computational rheologists have tried to achieve the solutions of the 4:1 contraction flow of
the highly elastic fluids with various numerical schemes. But it is not easy to obtain the
converged solution of highly elastic fluid in the contraction flow, especially in the
neighborhood of a singular point. Nevertheless, the critical Weissenberg number of the
numerical solutions has been increased persistently due to the improved numerical
approaches.

In this work, we obtained transient solutions of the highly elastic fluid using the fractional
4-step finite element formulation with the stabilizing skill such as DEVSS-G (discrete
elastic-viscous stress-splitting) / DG (discontinuous Galerkin). As a constitutive equation, the
Oldroyd-B model was used. With these improved stabilizing techniques [1,2], the coupled
problem of velocity and pressure could be split into several small problems. Here, we could
observe a very interesting transient behavior of the highly elastic fluid in the 4:1 planar

contraction flow simulation.
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Theory

We consider momentum equation including inertia and transient terms with

incompressible constraint, and the Oldroyd-B model is used as a constitutive equation.
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where ResHUp/n, is the Reynolds number, B=ny/n, is the ratio of the solvent viscosity
(ns) and the solution viscosity (o). H is a characteristic length and p is the density. We=
AU/H is the Weissenberg number, where A is the relaxation time of the Oldroyd-B model,
and 1,y is the upper-convected derivative of tensor T,
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Here we adopt fully implicit 4-step method[3], and carry out FEM formulation for the

Navier-Stokes equations{4]. Among the fractional 4-step finite element formulations, the 1st

equation can be replaced with DEVSS-G formulation.
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And in order to stabilize the solutions, constitutive equation is formulated by DG.
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where < A, B > denotes LABdQ on domain €2, n is a normal vector which has the

outward direction at the boundary of finite elements. 7% takes the upstream additional
ary p

stress value in the regionof u-n <0 [5].

Results & Discussion

We obtained the converged solutions of high We flow up to 9.5 with the fine mesh which

consists of 1985 elements and 2096 nodes. The time increment was At=2X10> , Re was

fixed with 0.1, and the relative error was roughly of the order of ten to —7~-8.
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Fig. 1. the steady solutions at various We (Re=0.1)

With above convergence criterion, we obtained the steady solutions at various We from 1
to 9.5 in Fig. 1. At We=1, the corner vortex is observed and no lip vortex appears. But as We
increases, the lip vortex enhancement mechanism dominates. The lip vortex is getting larger
at the re-entrant comer and its intensity is getting stronger as We increases, while the corner
vortex is getting weaker and is enveloped with the lip vortex.

If we observe the transient process of the highest We flow, namely at 9.5, almost the same
lip vortex enhancement mechanism is reproduced. As time goes on, the lip vortex appears,

grows and devours the comner vortex in the same way as we observe the vortex growth
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behavior from the steady state solutions with increasing We. Therefore, there seems to exist a

time-We superposition relationship in a vortex growth mechanism of a 4:1 planar contraction

flow.
time at3.0 at 8.4 at 13.2
at24.2 at 60.8 at227.4
Fig. 2. transient behavior of highly elastic fluid (We=9.5, Re=0.1)
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