• 제목/요약/키워드: 유기탄소 혼합물

검색결과 10건 처리시간 0.02초

산성광산배수로 오염된 지하수 정화용 투수성 반응벽체 반응매질 선정 기초실험 (Experiment of Reactive Media Selection for the Permeable Reactive Barrier Treating Groundwater contaminated by Acid Mine Drainage)

  • 지상우;정영욱
    • 자원환경지질
    • /
    • 제38권3호
    • /
    • pp.237-245
    • /
    • 2005
  • 중금속으로 오염된 산성 지하수의 현장 정화방법으로 투수성반응벽체 기술의 적용 가능성을 평가하기 위하여 반응매질 선정을 위한 실내실험을 수행하였다. 처리대상 오염지하수로 이용한 임기광산 폐석적치장 침출수는 낮은 pH와 높은 금속농도를 갖는다(산도부하량으로 65 kg $CaCO_3$/일, 금속부하량(Fe+Al+Mn)으로 11.6kg/일). 이러한 특성의 오염지하수는 반응매질로 유기탄소 혼합물을 이용하여 황산염환원 반응에 의한 처리가 가능할 것으로 판단된다. 다섯 가지 서로 다른 배합비를 갖는 버섯퇴비, 소나무 바크, 석회석의 혼합 반응매질을 이용한 배치실험 결과를 통해 보면 투수성반응벽체를 적용할 경우 산도부하량은 12.3kg $CaCO_3$/일, 금속부하량은 3.3kg/일로 줄일 수 있다. 대상 지하수의 낮은 pH와 높은 금속부하량을 고려하여 무기탄소를 위주로 한 완충용 반응벽체를 먼저 두고, 이어서 유기탄소 혼합물로 구성되는 반응벽체로 황산염 환원을 유도하는 방법 적용한다면 보다 효과적인 광산배수에 대한 정화를 기대할 수 있을 것이다.

나노튜브를 이용한 AC구동 OLED

  • 전소연;유세기
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2012년도 제42회 동계 정기 학술대회 초록집
    • /
    • pp.532-532
    • /
    • 2012
  • 탄소 나노튜브(carbon nanotube, CNT)를 사용하여 AC 구동 방식의 organic light emitting devices (OLED)를 만들었다. 이 소자는 ITO가 코팅된 유리 위에 유전체 층, 유기 발광층 그리고 맨 위의 금속 전극 층으로 총 3개의 층으로 구성되어있다. 유전물질로써는 cyanoethyl pullulan (CRS)를 N,N dimethylformamide (DMF) 용매에 녹여 ITO층 위에 코팅하였고, 유기발광 물질로 poly[2-methoxy-5-(2-ethylhexyloxy)-1,4-phenylenevinylene] (MEH-PPV)를 chloroform (CF)에 녹여 유전체 층 위에 코팅하였다. CNT를 MEH-PPV와 섞어서 유기발광 혼합물을 만들고 난 후, 유전체층 위에 코팅하였다. 마지막으로 알류미늄 전극을 시료 위에 코팅하였다. 소자에서 사용한 MEH-PPV에 의해 나오는 붉은색 발광을 확인 한 결과, CNT를 사용한 OLED 소자가 CNT를 사용하지 않는 소자보다 brightness가 좋았고, 전류도 더 작게 흘렀다. CNT의 농도에 따라 brightness의 변화는 경향을 나타냈다. CNT에 의한 percolation 효과 때문에 이러한 OLED 시료의 성능 향상이 이루어졌음을 입증하는 실험결과를 발표에서 설명할 예정이다.

  • PDF

Corynebacterium glutamicum의 탄소대사 및 총체적 탄소대사 조절 (Carbon Metabolism and Its Global Regulation in Corynebacterium glutamicum)

  • 이정기
    • 한국미생물·생명공학회지
    • /
    • 제38권4호
    • /
    • pp.349-361
    • /
    • 2010
  • 본 총설에서는 아미노산의 공업적 생산균인 Corynebacterium glutamicum의 탄소 대사 및 이와 관련된 총체적 조절 메커니즘에 대한 최근의 연구를 정리하였다. C. glutamicum의 산업적 발효을 위한 기질로서 사용되는 당밀은 주로 sucrose, glucose, fructose로 이루어져 있으며, 이들 당은 phosphotransferase system을 통해서 수송된다. C. glutamicum의 탄소 대사 특징은 glucose가 다른 당이나 유기산 등과 함께 존재할 때, glucose와 이러한 탄소원 들을 동시에 대사한다. 그러나 glucose/glutamate 혹은 glucose/ethanol 등의 혼합물에서 는 탄소원의 순차적 이용으로 인해 나타나는 diauxic growth 현상을 나타내며, 이러한 carbon catabolite repression(CCR) 현상은 E. coli나 B. subtilis 등에서 알려진 것과는 다른 독특한 분자적 메커니즘과 조절 circuits을 가지고 있음이 밝혀지고 있다. C. glutamicum의 CRP homologue인 GlxR은 acetate 대사를 포함하여 glycolysis, gluconeogenesis 및 TCA cycle 등을 포함하는 중심탄소대사 조절 뿐만 아니라, 다양한 세포 기능의 조절에 관여하는 총체적 조절 단백질로서의 역할이 제시되고 있다. C. glutamicum의 adenylate cyclase(AC)는 막과 결합된 class IIIAC 로서, 막 단백질의 특성상 아직 규명되어 있지 않은 세포 외부의 환경 변화에 대응하여 세포 내의 cAMP합성 수준을 조절할 수 있는 sensor로 추정할 수 있다. 특히 C. glutamicum의 경우 배지내 glucose 를 비롯한 탄소원과 cAMP 농도와의 관련성이 E. coli에서 알려진 교과서적 지식과는 상반되게 변화하는 경향을 보이고 있어, cAMP signaling에 의한 세포 내 regulatory network 등은 향후 풀어야 할 의문으로 남아있다. 탄소대사 조절의 최상위에 존재하며 global 조절자인 GlxRcAMP 복합체 이외에도 차상위 전사조절 단백질로서 RamB, RamA, SugR 등이 존재하여 다양한 탄소대사를 조절한다. 최근 들어서는 새로운 탄소원으로서 대두되고 있는 biomass 관련 기질들을 이용할 수 있는 C. glutamucum 균주 구축을 통하여 이용 기질의 범위를 확대시키고자 하는 연구 및 탄소 대사와 관련하여 L-lysine의 발효 수율 혹은 생산성을 향상시키고자 하는 다양한 분자적 균주 육종 연구 등이 수행되고 있다.

Carboxylic acid 이성분계의 고-액 상평형과 과잉물성, 굴절률 및 점도 편차 (Solid-Liquid Equilibria and Excess Molar Volumes, Refractive Indices and Deviation in Viscosity for Binary Systems of C3-C6 Carboxylic Acids)

  • 구지은;오하영;박소진
    • Korean Chemical Engineering Research
    • /
    • 제57권1호
    • /
    • pp.78-84
    • /
    • 2019
  • 최근 지속 가능형 에너지로 바이오 부탄올(bio-butanol)에 관한 연구가 활발히 진행되고 있으나, 이의 상업화에는 저렴한 바이오메스 개발 및 경제적 분리 방법 등 선결해야 할 문제들이 있다. 전통적인 ABE 바이오부탄올 발효공정은 아세톤, 부탄올, 에탄올과 함께 유기산(organic acid)과 같은 부산물을 생성한다. 따라서 이들의 상호분리를 위해 아세톤, 부탄올, 에탄올 및 아세틱 산에 대한 상평형 데이터 등은 많이 발표되었으나, 탄소수가 큰 유기산에 대한 상평형 및 혼합물성 데이터는 매우 부족한 실정이다. 따라서 본 연구는 $C_3-C_6$ 유기산 조합의 이성분계 혼합물에 대한 고-액 상평형과 혼합물성으로 과잉부피($V^E$), 굴절율 편차(${\Delta}R$) 그리고 점도 편차(${\Delta}v$)를 298.15 K에서 실험적으로 측정하였다. 측정된 고-액 상평형 데이터는 NRTL, UNIQUAC식을 이용하여 상관시켰으며 RMSD, 0.5 K이하로 잘 상관되었다. 또한 동일 이성분계 혼합물에 대한 $V^E$, ${\Delta}R$${\Delta}v$의 혼합물성 데이터는 Redlich-Kister 다항식을 이용해 매개변수를 상관하였으며 약 0.004 이하의 표준편차로 잘 상관됨을 확인하였다.

이산화탄소와 알코올류의 혼합물에 대한 방사선 분해반응에 관한 연구 (Gamma-Radiolysis of Carbon Dioxide (V). Radiolysis of Carbon Dioxide-Alcohol Mixtures)

  • 최상업;변형직;진준하
    • 대한화학회지
    • /
    • 제35권1호
    • /
    • pp.3-15
    • /
    • 1991
  • 10 torr의 기체 iso-프로필알코올과 0∼1990 torr의 이산화탄소의 혼합기체에 0∼50 kGy의 Co-60감마선을 조사한 후 생성물을 기체크로마토그래프로 분석하여 일산화탄소, 아세톤, 메탄, 에탄, C$_3$H$_a$, C$_4$H$_b$ 및 tert-부틸알코올 등이 생성됨을 알았다. 490 torr 이상의 이산화탄소가 혼합된 시료에서는 G(CO)값 약 4를 얻었다. 아세톤 등 각 유기생성물의 생성속도와 iso-프로필알코올의 분해속도는 이산화탄소의 압력에 비례하여 증가되었는데, 이산화탄소 압력 10 torr 증가당 G-(-iso-Propanol)값은 4, G(Acetone)값은 2씩 증가되었다. 본 실험의 결과를 토대로 iso-프로필알코올과 이산화탄소 혼합기체에서의 방서선에 의한 일산화탄소와 각종 유기물의 생성반응 및 iso-프로필알코올의 분해반응 메카니즘을 고찰하였다.

  • PDF

퀴놀린-페놀 혼합용액의 습식산화 (Wet Co-Oxidation of Quinoline and Phenol)

  • 류승훈;윤왕래;서일순
    • 공업화학
    • /
    • 제20권5호
    • /
    • pp.486-492
    • /
    • 2009
  • 퀴놀린 습식산화는 $225^{\circ}C$$250^{\circ}C$에서 수행되었다. $250^{\circ}C$에서의 습식산화에서 퀴놀린은 30 min 내에 완전히 분해되었으며 총 유기탄소(TOC)는 120 min 내에 63% 감소하였다. 반면에 $225^{\circ}C$에서의 습식산화에서는 TOC는 240 min 동안 13% 감소하였다. 퀴놀린 산화 중 니코틴산과 초산이 주 중간생성물로 생성되었다. 균일촉매 $CuSO_4$ 또는 쉽게 산화되는 페놀을 첨가하여 온화한 반응조건인 $200^{\circ}C$에서의 퀴놀린 습식산화도 수행하였다. $CuSO_4$를 0.20 g/L 사용한 촉매 습식산화는 $250^{\circ}C$ 습식산화에서와 비슷한 퀴놀린 및 TOC 제거속도를 보였다. $200^{\circ}C$에서의 퀴놀린과 페놀 혼합물 습식산화에서는 퀴놀린과 페놀의 분해 개시에 필요한 자유라디칼이 생성되는 유도기간이 나타났다. 주어진 퀴놀린 초기농도에서 페놀 초기농도를 증가시킴에 따라, 퀴놀린과 페놀 분해를 위한 유도기간은 짧아졌고 습식산화 180 min 동안의 TOC 감소율은 60%에서 75%까지 증가하였다. 유도기간의 감소율은 퀴놀린에 대한 페놀 초기농도비를 증가시킴에 따라 감소하였다. 반면에 퀴놀린과 페놀 혼합물 습식산화에서의 페놀분해는 페놀 습식산화에서 보다 긴 유도기간을 필요로 하였고 서서히 진행되었다.

음식물쓰레기 탈리액의 삼상분리 (A Study on the Separation of Food-Waste Leachate into 3 Phases)

  • 김상국;정민지;권효리
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2010년도 추계학술대회 초록집
    • /
    • pp.197-197
    • /
    • 2010
  • 음식물쓰레기의 삼성분은 수분, 휘발분, 회분이며 이들이 차지하는 비율은 계절, 지역별로 다소 상이하지만 수분 약 80%, 회분3%, 휘발분 17%이다. 음식물쓰레기 전처리과정으로 이물질제거, 탈수공정이 있으며 탈수공정에서 다량의 탈리액이 발생한다. 본 연구에서는 탈리액을 데칸타를 이용하여 1차로 원심분리하여 고.액 분리한 액을 실험대상으로 하였다. 실험대상 탈리액의 물성은 BOD 78,800[mg/l], COD 41,000[mg/l], 부유물질 25,900[mg/l], 총질소 928[mg/l]이었다. 탈리액에는 기름성분(육류, 식용유등), 입자상물질등이 포함되어 있으며 이들은 난분해성 유기물질로, 이를 제거하는데 기존의 처리방법으로 많은 어려움이 있어 주요한 수질오염 발생원이 되고 있다. 예를들면 하수처리장 폭기조 수면에 유막을 형성하여 산소공급을 방해함으로 미생물번식을 방해하는 요인이 된다. 본 연구는 음식물쓰레기 탈리액의 수분, 고형분, 유분으로의 삼상분리에 관한 것이다. 유분은 에멀젼형태로 안정되게 수층에 분산되어 존재한다. 미세기포를 이용한 부상법의 경우 미세기포 표면과 유분의 화학적친화력이 낮아 기포표면에 유분이 잘 부착되지 않으며, 원심분리 방법만으로는 유분 분리효율이 낮고, 추출에 의한 분리시 추출액이 다량 소요되고 처리시간이 길며 추출액 비용이 많이 소요된다. 탈리액을 유분, 슬러지, 수분으로 분리하면 환경오염을 일으키는 주요성분을 신재생에너지 원료로 활용할 수 있다. 유분의 주성분이 동식물성 유지이므로 전처리시 산촉매를 이용 수분과 유리지방산을 제거하고 염기성촉매를 이용하여 전이에스테르화 반응을 거치면 바이오디젤인 FAME과 글리세롤으로 변환하므로 글리세롤을 분리하면 바이오디젤을 얻을 수 있다. 슬러지는 입자상 물질로 착화가 잘 되고 건조하면 발열량이 높으며 중금속등에 오염되지 않아 청정연료로 활용이 가능하다. 실험실에서의 탈리액 삼상분리방법은 다음과 같다. 탈리액 30ml당 추출액으로 노말헥산을 1ml를 가한 다음 플라스크에서 $80^{\circ}C$로 가열 후 방냉한다. 가열중 노말헥산의 손실을 방지하기 위하여 증발가스를 콘덴서에서 응축하여 플라스크로 재순환한다. 탈리액을 플라스크에서 꺼내어 원심분리기 rack에 300-400g씩 병에 각각 넣고 4,000rpm으로 30분간 운전한다. 탈리액은 상부로부터 유분층, 미세입자층, 수층, 슬러지층으로 분리된다. 각 층의 계면에서 2종의 성분이 약간 섞일 수 있다. 유분을 분리한 후 유분층 잔존물과 미세입자층, 수층 상층부의 혼합물을 취하여 50g씩 병에 넣고 3,500rpm으로 10분간 운전한 후 유분을 분리한다. 마지막으로 미세입자층만을 3,500rpm으로 10분간 원심분리한 후 유분을 따로 분리한다. 얻어진 유분은 rotary evaporator에서 $120^{\circ}C$로 가열하여 유분과 노말헥산을 분리하며 분리효율을 제고하기 위하여 감압하에서 운전한다. 분리된 유분의 고위발열량이 9,450[Kcal/kg]이었으며 원소분석 결과 탄소 74.7%, 수소 12.55%, 질소 0.08%, 유황분 0.0003%이었다. 분리된 유분의 양은 계절별로 시료별로 다르며 가을철에는 1.6-1.9%, 여름철은 1.0-1.3%이었다. 분리된 슬러지로부터 Hg, As, Cr, Cd, Pb 중금속 성분이 검출되지 않았으며 수분 2.8%, 휘발분 76.85%, 회분 7.52%, 고정탄소 12.83%이었고 원소분석결과 탄소 45.25%, 수소 7.46%, 질소 5.05%, 산소 34.39%, 유황분 0.33%이었으며 저위발열량은 4,480[Kcal/kg]이었다. 분리된 슬러지 양은 11-19% 이었다.

  • PDF

Pseudomonas putida KT-3의 Methyl Ethyl Ketone 및 Methyl Isobuthyl Ketone 분해 특성 (Degradation Characteristics of Methyl Ethyl Ketone and Methyl Isobuthyl Ketone by Pseudomonas putida KT-3.)

  • 김민주;이태호;이경미;류희욱;조경숙
    • 한국미생물·생명공학회지
    • /
    • 제30권4호
    • /
    • pp.395-401
    • /
    • 2002
  • 각종 산업시설에서 유기용제로 사용되는 methyl ethylketone(MEK)과 methyl isobutyl ketone(MIBK)을 유일 탄소원으로 이용할 수 있는 Pseudomonas putida KT-3 균주에 의한 이들 물질의 생분해 특성을 조사하였고, MEK/MIBK 혼합물 분해에 미치는 이들 기질 상호간의 작용을 규명하였다. MEK 단독 기질 조건에서 MEK 첨가농도가 0.5에서 5.5mM로 증가함에 따라 KT-3 균주에 의한 MEK 분해속도도 3.15에서 10.58 mmol/g DCW$\cdot$h로, MEK 첨가량이 5.5mM인 경우와 거의 유사한 속도를 얻을 수 있었다. 또한 MIBK 단독 기질 조건에서 KT-3 균주에 의한 MIBK 분해속도는 3.0mM 이상의 MIBK 농도에서는 MIBK 농도에 상관없이 4.69-4.96 mmol/gDCW$\cdot$h로 거의 일정하였다. KT-3 균주의 MEK/MIBK 혼합물에서의 생분해 속도의 감소는 두 기질 상호간의 경쟁적인 저해작용에 의한 것임을 알 수있었고, 속도론적 해석 결과 얻는 MEK와 MIBK의 최대분해속도 ($V_{max}$), 포화상수 ($K_{m}$) 및 저해상수 ($K_{1}$)는 다음과 같다. $V_{max,MEK}$=12.94 mmol/g DCW$\cdot$h; $K_{m,MEK}$=1.72 mmol/L; $K_{l,MEK}$=1.30 mmol/L; $V_{max,MIBK}$=5.00 mmol/g-DCW$\cdot$h; $K_{m,MIBK}$=0.42 mmol/L; $K_{l,MEK}$=0.77 mmol/L.

제지슬러지와 돈분을 이용한 퇴비화 과정중 이화학적 특성 변화 (Changes of Physico-chemical Properties of paper Mill Sludge amended with Pig Manure in Composting Process)

  • 민경훈;장기운;유영석
    • 유기물자원화
    • /
    • 제8권4호
    • /
    • pp.86-92
    • /
    • 2000
  • 본 연구는 퇴비화에 있어서 제지 슬러지(PMS)와 돈분(PM)의 최적혼합비율을 결정하기 위해 실시하였다. 제지슬러지는 풍부한 탄소와 적은 질소를 함유하고 있기 때문에 탄소의 공급원으로서 사용되었다. 또한 건조된 제지슬러지는 혼합물의 수분을 조절할 목적으로 첨가되었다. 처리구는 PMS-100(PM 0%+PMS 80%+DPMS 20%), PMS-85(15+65+20), PMS-70(30+50+20), PMS-55(45+35+20) 4개로 구성되었다. 퇴비화은 호기성조건에서 정체식(규모 $1.25m^3$)으로 실행되었으며, 일일 15분씩 공기를 공급하였고 퇴비화초기에는 주마다 뒤집기를 실시하였다. 퇴비의 부숙도를 평가하기 위해 온도, pH, C/N율과 색도의 이화학성 변화를 조사하였다. 이화학성을 분석한 결과 효과적인 퇴비화을 위한 수분과 C/N율의 최적조건은 각각 25~30과 55~60%이었다. 제지슬러지에 돈분이

  • PDF

1-[(아릴)(페닐셀레노)메틸]벤조트리아졸과 셀렌화 6-아릴-6-(벤조트리아졸-1-일)-1-헥센일 페닐의 삼부틸틴 수소화물과의 반응메카니즘에 관한 연구 (Mechanistic Studies on the Reactions of 1-[(Aryl)(phenylseleno)methyl]benzotriazoles and 6-Aryl-6-(benzotriazol-1-yl)-1-hexenyl Phenyl Selenides with Tributyltin Hydride)

  • 강윤호;김경태
    • 대한화학회지
    • /
    • 제43권1호
    • /
    • pp.74-84
    • /
    • 1999
  • 벤조트리아졸을 보조체로 사용하는 유기합성법은 거의 대부분 이온성 반응 메카니즘으로 설명되며 라디칼 반응을 이용한 벤조트리아졸의 응용은 거의 없었다. 벤조트리아졸의 N-1의 ${\alpha}$위치 탄소 원자에 라디칼 중심을 만든 후 벤조트리아졸의 다섯고리를 형성하는 질소 원자중에서 질소 분자가 빠져나감으로서 생성되는 페닐 라디칼의 반응을 연구하기위해 1[(aryl)(phenylseleno)methyl]benzotriazole, AIBN, 그리고 $Bu_3$SnH을 벤젠에 용해시키고 환류시켜 주었다. 이 반응 혼합물로 부터 2-aminodiphenyl selenide (16∼29%), 2-aminobiphenyl (9∼15%), diphenyl diselenide (30∼93%), 1-(arylmethyl)benzotriazole (9∼39%), 그리고 tributyltinphenyl selenide (10∼36%)을 얻었으며, AIBN없이 과량의 $Bu_3$SnH 존재하에 같은 조건하에서 반응시키는 경우,diphenyl diselenide (53∼100%), benzotriazole (27∼35%) 그리고 1-(arylmethyl)-benzotriazole (16∼33%)와 함께 arylmethylidenaniline이 과량의 $Bu_3S_nH$에 의해 환원된 N-(arylmethyl)anilines (44∼66%)이 생성되었다. 같은 조건 하에서 6-aryl-6-(benzotriazol-1-yl)-1-hexenyl phenyl selenides, AIBN, 그리고 $Bu_3$SnH의 반응으로부터 6-aryl-6-phenylamino-1-hexene(9∼31%)과 1-aryl-1-oxo-5-pentene (15∼44%)을 얻었다. 이들 생성물의 생성 메카니즘을 제시하였으며 벤조트리아졸이 합성 보조체로 이용된 경우 $Bu_3$SnH에 의해 벤조트리아졸의 세개의 질소 원자를 포함하는 다섯원자고리로 부터 라디칼 반응에 의해 질소 분자가 빠져나가는 것을 보여준 새로운 예이다.

  • PDF