Journal of the Korean Chemical Society Vol. 35, No. 1, 1991 Printed in the Republic of Korea

이산화탄소와 알코울류의 혼합물에 대한 방사선 분해반응에 관한 연구

崔相葉^{*}·晉伐夏·邊衛直* 서강대학교 이공대학 화학과 *한국원자력연구소 (1990. 8. 6 접수)

Gamma-Radiolysis of Carbon Dioxide(V). Radiolysis of Carbon Dioxide-Alcohol Mixtures

Sang Up Choi[†], Joon Ha Jin, and Hyung Chick Pyun* Department of Chemistry, Sogang University, Seoul 121-742, Korea *Korea Atomic Energy Research Institute, Seoul 130-650, Korea (Received August 6, 1990)

요 약. 10 torr의 기체 iso-프로필알코울과 0~1990 torr의 이산화탄소의 흔합기채에 0~50 kGy의 Co-60 감마선을 조사한 후 생성물을 기체크로마토그래프로 분석하여 일산화탄소, 아세톤, 매탄, 에탄, C₃H_a, C₄H_b 및 tert-부틸알코올 등이 생성됨을 알았다. 490 torr 이상의 이산화탄소가 흔합된 시료에서는 G(CO)값 약 4를 얻었다. 아세톤 등 각 유기생성물의 생성속도와 iso-프로필알코올의 분해속도는 이산화탄소의 압력에 비례하여 중가되었는데, 이산화탄소 압력 10 torr 중가당 G(-iso-Propanol)값은 4, G(Acetone)값은 2씩 증 가되었다. 본 실험의 결과를 토대로 iso-프로필알코올과 이산화탄소 흔합기체에서의 방사선에 의한 일산화 탄소와 각종 유기물의 생성반응 및 iso-프로필알코올의 분해반응 메카니즘을 고찰하였다.

ABSTRACT. The gaseous mixtures of *iso*-propanol of 10 torr with carbon dioxide of $0 \sim 1990$ torr were irradiated with Co-60 gamma radiation up to 50 kGy, and the products such as carbon monoxide, acetone, methane, ethane, C_3H_a , C_4H_b and *tert*-butanol were analyzed by gas chromatography. G(CO) value of 4 was obtained from the gas mixtures containing more than 490 torr of carbon dioxide. The production rates of the organic products and the decomposition rate of *iso*-propanol increased linearly with the pressure of carbon dioxide, and G(-iso-Propanol) and G(Acetone) values increased by 4 and 2, respectively, with each 10 torr increment of carbon dioxide pressure. The mechanisms of the radiolytic decomposition of *iso*-propanol and the production of carbon monoxide and organic materials are discussed on the basis of the experimental results of the present study.

서 론

순수한 알코올의 방사선 분해반응과 여러 가지 첨가제의 영향에 관한 연구는 60년대부터 시작되어 그 동안 많은 연구결과가 보고되었다. 특히 매틸알 코올과 에틸알코올에 대해서는 액체나 고체 뿐 아 니라^{1~5} 기채상태에서의 연구 등⁶⁷을 통해 그 방사선 분해반응이 비교적 잘 밝혀져 있다. 알코올은 극성화합물로서 방사선에 의한 반응이 물의 경우와 매우 유사하다. 순수한 알코올의 방사선 분해반응에서는 수소, 일산화탄소, 귤리콜, 알데히드 및 캐톤 등이 생성되는 것으로 알려져 있다⁸⁹, 알 데히드는 주로 1차 알코올로부터 생성되고 케톤은 3차 알코올로부터 생성된다. 2차 알코올은 알데히 드와 케톤을 동시에 생성한다. 산소가 존재하지 않 으면 글리콜이 생성되는데 대부분의 경우 α-글리콜 인 것으로 보아 알코올의 방사선 분해반응에서 α-수소를 잃어버리는 다음과 같은 반응이 일어나는 것으로 알려져 있다.

 $R_1(R_2)$ CHOH $\longrightarrow R_1(R_2)$ COH+ · H (1)

수소의 생성량은 알코올 분자가 선형일 때 가장 많고, 가지수가 증가됨에 따라 감소되며, 탄화수소 류의 생성량은 이와 반대의 경향을 보이는 것으로 알려져 있다. 이러한 생성물의 분포는 알코올 분자의 형태 뿐 아니라 방사선 조사시의 여러 가지 조건 즉 물리적 상태(기체, 고체, 액채), 온도, 압력, 방 사선의 선량률, 총흡수선량 및 방사선의 LET 등에 의해 영향을 받으며, 불순물 또는 타물질의 첨가에 의해서도 영향을 받는다.

본인 등은 이산화탄소의 방사선 분해과정에서 생 성되는 일산화탄소의 수율에 미치는 영향을 알아보 기 위해 소량의 각종 알코울류를 이산화탄소에 첨 가하여 방사선 분해반응을 연구한 바 있다^{10,11}. 이 산화탄소의 방사선 분해반응은 이산화탄소를 냉각 제로 사용하는 공명식 원자로의 혹연부식 문제에 관한 연구나^{12,13}, 폐기되는 방사선에너지를 화학에너 지로 회수하여 수소를 생산하기 위한 연구 등^{14~16} 응용분야 뿐 아니라, 방사선 화학반응의 본질을 고 찰하기 위한 기초연구로서도 많은 연구자들의 관심 을 끌어 왔다.

순수한 이산화탄소가 방사선 분해 될 때 1차적인 반응과정에서 생성되는 화학종들의 종류 및 흡수방 사선에너지 100 eV당 생성되는 입자수(G-value)는 다음과 같은 것으로 보고되었다¹⁷.

7.53 CO₂ \longrightarrow 0.07 C⁺ + 0.51 CO⁺ + 0.21 O⁺ + 2.24 CO₂+ 4.71 CO+ 5.16 O + 3.03 e⁻ (2)

이둘 중 이온종들은 반응성이 높아 조기에 소멸되고, 일산화탄소 및 산소원자만 남게 되는데, 이들도 서로 재결합하는 반응을 일으켜 일산화탄소의 수율을 감 소시킨다¹⁸.

 $CO + O + CO_2 \longrightarrow CO_2 + CO_2 \qquad (3)$

일산화탄소의 수율을 증가시키기 위해서는 산소원

자를 제거함으로써 반응 (3)을 억제하여야 한다. 산소원자 포획제로는 이산화질소¹⁹²⁰, 이산화황²¹, 수 소²², 메탄²³, 프로판²⁴ 등이 연구되었고, 본인 등은 각종 알코올류의 첨가가 일산화탄소의 수율에 미치 는 영향을 연구하였다¹¹. 이 실험에서 0.1%의 알코 울울 첨가하여 알코올의 종류에 따라 4.1~5.2의 *G* (CO)값을 얻어, 알코올 첨가가 일산화탄소의 수율 중대에 효과가 있음을 알았으나, 그 작용메카니즘은 명확하게 규명하지 못하였다.

본 실험에서는 여러 가지 농도의 알코올과 이산 화탄소 혼합기채의 방사선 분해반응을 연구함으로써 알코올의 분해반응에 미치는 이산화탄소의 영향을 규명하고, 아울러 이산화탄소의 방사선 분해시 일 산화탄소의 수율증대에 미치는 알코올의 영향도 고 찰하고자 하였다.

실 험

시약 및 재료. 이산화탄소는 순도가 99.99%인 시판품을 진공조작 장치내에서 액채질소로 응축시켜 비응축 성분을 제거한 다음, 다시 녹이면서 처음 및 나중에 방출되는 것은 제거하고 중간에 방출되는 성분만을 취하는 과정을 3회 반복하여 정제하였다. *iso-프로필*알코을(Wako제, 1급)은 뚜껑이 있는 시험관에 반정도를 채우고, 여기에 500°C에서 24시간 동안 가열하여 건조시킨 분자체(Molecular Sieve 5A, 8~12 mesh, Davison Chemical제)를 액면의 반정도 까지 채운 다음, 수시간 흔들어 수분을 제 거하였다. 이것을 진공조작 장치에서 2회 진공 증 류하여 사용하였다.

시료조사 용기는 외경 30 mm Pyrex 유리관으로 용량이 80 ml인 용기를 Fig. 1과 같이 제조하였다. 이 조사용기들은 중류수로 세척한 후 전기로에 넣어 550℃에 8시간 가열하여 용기표면의 유기물을 제거 한 다음 사용하였다.

조사시료의 제조. 이산화탄소의 iso-프로필알코 을의 혼합비율이 다른 여러 가지의 혼합기체를 만 들고, 이것을 시료조사용기에 주입하기 위하여 Fig.2 와 같은 진공조작 장치를 사용하였다. 이 진공조작 장치는 로타리펌프 및 확산펌프를 사용하여 장치내 의 진공도가 10⁻³torr 이하가 되도록 하였다.

Fig. 2. Vacuum line system.

10

Pressur	re, torr	Concentration, %				
i-PrOH	CO ₂	i-PrOH	CO ₂			
10	0	100	0			
10	10	50	50			
10	40	20	80			
10	90 .	10	90			
10	490	2	98			
10	990	1	99			

0.5

1990

99.5

Table 1. Various sample mixtures of CO₂ and iso-Propanol

Fig. 1. Irradiation sample container(unit : mm).

혼합기체 시료의 알코올 농도를 정확하게 측정하 기 위하여 수은 프탈산 압력측정 장치를 제작하여 사용하였다. 이 장치는 수은압력계로 측정하기에는 수은주 높이의 차이가 너무 작고, 또 맥레오드나 피라니진공계로 측정하기에는 압력이 너무 높은 1~ 수십 torr의 유기기채의 압력을 측정하기 위하여 고안한 것이다. 이 정도의 압력은 중기압이 낮은 유기유(organic oil)를 사용한 압력계가 적합하나, 알코율 중기가 유기유에 쉽게 녹으므로 그대로는 사용이 불가능하다. 이러한 이유로 본 실험에서는 알코올과 접하는 쪽을 수은으로 하고, 압력을 나타 내는 쪽은 프탈산부틸에스테르를 사용하여 새로운 수은-프탈산에스테르 압력측정 장치를 제작하였다".

시료조사용기를 Fig.2와 같이 진공조작 장치에 연결하고 약 140℃로 가열하면서 약 10분간 진공탈 기시켰다. 또 기체알코올 분자의 기벽흡착을 억제 하기 위해 알코올의 양을 재는데 사용되는 V2(부피 19 m/)도 열선으로 감아 일정한 온도(약 130℃)를 유지하도록 하였다. 콕크 C1을 그림과 같은 상태로 하고, V2에 필요한 양의 알코울을 채웠는데, 이 때 압력측정은 전술한 수온 프랄산압력계로 측정하였 다. 이산화탄소의 양은 Vi과 수은 압력계로 측정하 였다. 또 V1 및 V2의 온도를 측정하여 이상기채상태 방정식에 의해 알코올 농도를 산출하였다. 이 기체 들을 액채질소를 사용해 80 m/ 조사용기에 응축시 키고, 진공도를 확인한 후 조사용기의 콕크를 닫았 다. 이러한 방법으로 Table 1과 같은 조성으로 7 가지의 시료를 제조하였다.

5

방사선 조사. 시료의 방사선 조사에는 한국원자 력연구소의 Co-60 대단위 조사시설(카나다, AECL, IR-79, 선원세기 약 100 kCi)을 사용하였다. 선원의 중심으로부터 수평거리에 따른 방사선량률을 Ceric-Cerous Sulfate 선량계를 사용하여 측정하여 선량 률이 5 kGy/hr인 위치를 찾아 이 위치에서 시료를 조사하였다.

선량측정에 사용된 Ceric-Cerous Sulfate 선량계 는 과망간산칼륨 및 중크롬산칼륨으로 유기물을 제 거시킨 3차 증류수로 0.4 M 황산(Merck제, EP) 수용액을 만들고, 여기에 Ceric Sulfate 및 Cerous Sulfate를 각각 20 mM씩 가하여 선량계용액을 제 조하였다. 550°C에서 8시간 이상 가열처리하여 유 기물을 제거시킨 유리앰플에, 이 용맥 2 m/씩 넣고 화염으로 밀봉하여 선량계를 제조하였다. 제조된 선량계는 국제원자력기구(AECL)의 국제선량보증업 부(International Dose Assurance Service)에 의해 제공된 Alanine/ESR 선량계에 의해 보정을 받았다. 방사선율 조사한 후 자의선분광분석기(Carv Model 15)로 파장 320 nm에서 0.4 M 황산용액으로 100배 로 회석한 선량계 용액의 흡광도를 측정하여 조사 되지 않은 것과의 차이(ΔOD)를 구하였다. 이 흡 광도 차이로부터 선량을 산출하는 식은 다음과 같 다.

$$D = \frac{1760 \times d}{G(Ce^{3^+})} \times \Delta OD(rad)$$
(4)
(d: dilution factor)

코발트-60 감마선의 에너지는 1.17 및 1.33 MeV 로서, 그 에너지의 대부분이 콤프톤 산란에 의해 물질에 흡수되는데, 콤프톤 산란에 의한 에너지 흡 수는 물질의 전자밀도예만 의존된다. 따라서 이산 화탄소가 흡수한 선량(D_{cop} 은 Ceric-Cerous Sulfate 선량계가 흡수한 선량(D_{cc})으로부터 다음 식에 의해 산출하였다.

$$D_{\rm CO_2} = D_{\rm CC} \times \frac{(A/M)_{\rm CO_2}}{(A/M)_{\rm H_2O}} = 0.9 \times D_{\rm CC} \quad (5)$$

(A:원자번호의 합, M:분자량)

마찬가지로 프로필알코울이 흡수한 선량(D_{ip})은 다 음식으로 계산하였다.

$$D_{ip} = D_{cc} \times \frac{(A/M)_{ip}}{(A/M)_{H=0}} = 1.02 \times D_{cc}$$
 (6)

이산화탄소와 iso-프로필알코올의 혼합물의 경우 두 성분의 몰분율을 각각 f_{con} or f_u라고 하면 그 혼합 물이 흡수한 선량(D_{min})은 다음식으로 계산하였다.

$$D_{mix} = D_{\text{CO}_2} f_{\text{CO}_2} + D_{i\beta} f_{i\beta} \tag{7}$$

이 혼합기책에 D_{mix} kGy의 방사선을 조사하여 생성된 물질을 분석한 결과 원래의 이산화탄소에 대하여 Z 몰%의 어떤 물질이 생성되었다고 하면 흡수된 방사선에너지 100 eV당 생성된 그 물질의 분자수(즉, G값)는 다음과 같이 계산하였다.

$$G = \frac{6.02 \times 10^{23} (\text{molecules mole}^{-1}) \times Z/100}{D_{\text{mix}} \times 1000/44 (\text{mole kg}^{-1})}$$
$$= 2190 \times \frac{Z}{D_{\text{mix}}} \left(\frac{\text{molecules}}{100 \text{ eV}}\right)$$
(8)

생성물의 분석결과 원래의 iso-프로필알코올에 대하 여 Z 몰%의 물질이 생성되었다고 하면 그 G값은 다음식으로 계산된다.

$$G = \frac{6.02 \times 10^{23} (\text{molecules mole}^{-1}) \times Z/100}{D_{\text{mix}} \times 1000/60 (\text{mole} \cdot \text{kg}^{-1})}$$
$$= \frac{1606 \times \frac{Z}{D_{\text{mix}}} (\frac{\text{molecules}}{100 \text{ eV}}) \qquad (9)$$

문석. 반응물 및 생성물의 분석에는 기체크로마 토그래프(Shimadzu GC-1C)를 사용하였다. 방사선 이 조사된 시료 중에는 이산화탄소 및 알코올과 함께 각종 탄화수소나 케톤 등 유기물들과 일산화탄소 등이 함유되어 있으므로, 이를 하나의 분리관으로 모두 분리하기는 어렵다. 본 실험에서는 Molecular Sieve 5A 분리관(길이 335 cm, 안지름 3 mm, Shimadzu제, 60~80 mesh) 및 Porapak Q 분리관(길이 185 cm, 안지름 3 mm, Alltech Associate제, 100~ 120 mesh)을 사용하여, 전자로는 액체질소 온도에서 응축되지 않는 성분을, 후자로는 응축되는 성분을

Journal of the Korean Chemical Society

analysis

Fig. 3. Flow of gas sample in gas chromatography.

분석하였다.

동일한 시료에서 양자를 모두 분석하기 위해 Fig. 3과 같은 기체시료 주입장치를 사용하였다. Sլ을 (1) 로, S₂률 (2)로, S₃를 (1)로 하여 두고, 시료용기를 갈아맞춘 연결관으로 기체시료 주입단자에 연결하고 시료주입기 내부를 진공으로 하였다. Ci을 닫고 시 료용기의 콕크를 열어 시료기체를 시료주입기 내부 로 주입시킨 후 S3 (2)로 하고, 2ml 스텐레스 기 체시료 용기를 액체질소에 넣었다. 약 1분이 경과한 다음, S₃를 (1)로 하여 비용축성분을 Molecular Sieve 5A 분리관으로 보냈다. 분리가 끝나면 S₁을 (2)로 하고, S₃을 (2)로 한 다음, 2m/ 용기를 열풍 (약 120℃)으로 가열하였다. 약 2분간 가열한 다음, S₃플 (1)로 하여 응축성분을 Porapak Q 분리관으로 보내 분석하였다.

분리관 검출기 및 시료기화실의 온도는 각각 180 °C, 250°C 및 200°C로 하였고 운반기체는 헬륨을 사 용하였으며, Molecular Sieve 5A 및 Porapak Q

M 5

Column materia	l Materials	Retention time(min)	Detector
Molecular sieve	Oxygen	1.85	TCD
5 A	Nitrogen	2.15	TCD
	Methane	2.90	FID
	Carbon monoxide	.10	TCD
Porapak Q	Methane	0.69	FID
	Carbon dioxide	0.70	TCD
	Ethene	0.92	FID
	Ethane	0.98	FID
	Propane	1.51	FID
	Butane	2.42	FID
	Acetone	5.11	FID
	iso-Propanol	6.32	FID
_	tert-Butanol	8.87	FID

Table 2. Retention times of various materials in GC

분리관의 유속은 각각 32.5 ml·min⁻¹(2기압) 및 30 m/·min⁻ⁱ(1.2기압)로 하였다. 검출기로는 열전도검 출기(TCD)와 수소불꽃 이온화검출기(FID)를 사용 하였는데 TCD의 전류는 90 mA로 하였고, FID의 수소유속은 33 m/·min⁻¹로, 공기압력은 0.7기압으로 하였다. 분석된 각종 화합물이 분리되는 분리관의 종류와 머무른시간(retention time)은 Table 2와 같았다.

결과 및 고찰

용량 80 m/인 시료용기 7개에 각각 10 torr씩의 iso-프로필알코올을 넣고 여기에 1990, 990, 490, 90, 40, 10 및 0 torr의 이산화탄소를 주입하여 iso-프로 필알코올의 농도가 각각 0.5, 1, 2, 10, 20, 50 및 100 %인 혼합기체시료를 제조하여 선량률이 5 kGy/hr인 Co-60 감마선으로 0, 10, 20, 30, 40 및 50 kGy의 방사선을 조사하였다. 10 kGy 조사시마다 시료기체 일부를 사용하여 가스크로마토그래프로 방사선 분 해생성물을 분석하였다. 방사선 분해생성물 중에서 는 일산화탄소가 가장 다량으로 생성되었고, 유기 생성물로서는 아세톤이 가장 많았다. 다음은 탄화 수소로 매탄, 예탄, 프로판, 부탄의 순서이였으며 tert-부틸알코올도 소량 생성되었다.

일산화탄소의 생성. 시료의 조성 및 방사선 조 사선량에 따라 일산화탄소의 생성량(첨가한 iso-프 로필알코올에 대한 몰%로 표시)을 측정한 결과는 Table 3과 같으며, 이를 조사선량에 대하여 그래프로 나타내면 Fig. 4와 같다. 생성된 일산화탄소의 양이 선량에 따라 직선적으로 증가되었는데, 그 증가속 도는 첨가된 이산화탄소의 양에 따라 커짐을 알 수 있었다. 이러한 실험결과는 생성된 일산화탄소가 첨가된 이산화탄소의 양에 의하여 영향을 받는다는 뜻이다. Table 3에 표시된 바 iso-프로필알코올애 대한 일산화탄소의 몰% 농도를 이산화탄소의 양예 대한 일상화탄소의 몰% 농도를 이산화탄소의 양예 대한 볼%로 환산하여 Table 4에 정리하였고, Fig. 5 에는 이를 첨가된 이산화탄소의 압력에 대한 그래 프로 나타내었다. 이 일산화탄소 생성량이 이산화 탄소 압력 90 torr 이하에서는 불규칙한 값을 보였 으나, 490 torr 이상에서는 이산화탄소 첨가량에 무 관하게 조사선량별로 비교적 일정한 농도를 나타내 었다.

이러한 결과를 좀 더 체계적으로 관찰하기 위해 일산화탄소의 농도를 식 (8)에 의해 G(CO)값으로 환산하여 Table 5에 표시하고 이를 Fig.6에 그래프 로 나타내었다. 이산화탄소 압력 490 torr 이상에서 는 약 4 정도의 일정한 G(CO)값을 보였는데 이는 다른 연구결과와¹¹ 비슷한 값이었다. G(CO)값이 압력에 무관하게 일정한 값을 보인다는 것은 이 값이 iso-프로필알코올의 농도에 무관함을 의미하며, 이는 대부분의 일산화탄소가 이산화탄소의 방사선 분해에

Fig. 4. Carbon monoxide obtained by radiolysis of the mixtures of *iso*-propanol(10 torr) with various amounts of carbon dioxide(\Box : 1990 torr, + : 990 torr, \diamond : 490 torr, \triangle : 90 torr, x : 40 torr, \heartsuit : 10 torr).

Table 3. CO concentrations (% of initial *iso*-propanol concentration) produced by the radiolysis of *iso*-Propanol-CO₂ mixture

 	Pressur	e, torr			D	ose, kGy		
(%)	<i>i</i> -PrOH	CO ₂	0	10	20	30	40	50
0.0	10	0	0		-		-	
50.0	10	10	0	_	_	_	—	-
80.0	10	40	0	—	-	-	0.30	0.87
90.0	10	90	0	-	0.28	0.64	1.02	1.83
98.0	10	490	0	0.69	1.96	2.17	2.83	4.02
99.0	10	990	0	1.37	3.00	4.50	5.60	6.84
99.5	10	1990	0	3.26	7.02	9.71	12.87	16.67

Table 4. CO concentration(% of initial CO₂ concentration) produced by the radiolysis of *iso*-Propanol-CO₂ mixture

	Pressur	e, torr						
(%)	<i>i</i> -PrOH	ÇO2	0	10	20	30	40	50
0.0	10	0	0	_	-	_	-	-
50.0	10	10	0	-	_	_	-	-
80.0	10	40	0	-	-	-	0.075	0.219
90.0	10	90	0	_	0.031	0.071	0.114	0.203
98.0	10	490	0	0.014	0.040	0.044	0.058	0.082
99.0	10	990	0	0.014	0.030	0.045	0.057	0.069
99 .5	10	1990	0	0.016	0.035	0.049	0.065	0.084

의해 생성됨을 뜻하는 것으로 생각된다.

반면 이산화탄소 압력이 90 torr 이하인 경우, 즉 iso-프로필알코올의 농도가 10% 이상인 경우에는 G (CO)값이 방사선 조사선량에 따라 급격히 중가되 었다. G(CO)값이 4보다 높은 값을 보이는 것은 비교적 높은 농도로 존재하는 iso-프로필알코울로부 터서도 일산화탄소가 생성될 가능성이 있음을 시사 하는 것으로 생각된다. 분자구조상 iso-프로필알코 올이 직접 방사선 분해되어 일산화탄소를 생성하기 는 매우 어렵기 때문에, 중간생성물인 아세톤으로 변화되었다가 이 아세톤이 다시 방사선 분해되어 일산화탄소를 생성하는 것으로 생각된다²⁵.

 $(CH_3)_2CHOH \xrightarrow{} CH_3COCH_3$ $CH_3COCH_3 \xrightarrow{} CO$

Fig. 5. Carbon monoxide concentration vs. carbon dioxide pressure (\Box : 10 kGy, +: 20 kGy, \diamond : 30 kGy, \triangle : 40 kGy, x: 50 kGy).

아세톤의 생성. 순수 iso-프로필알코올이나 이산 화탄소와의 혼합기체를 방사선 분해에 의해 생성된 유기생성물 중 아세톤은 가장 주된 생성물이었다. 혼합기체의 조성 및 방사선 조사선량에 따른 아세 톤의 생성량(첨가된 iso-프로필알코올에 대한 몰%로 표시)은 Table 6과 같다. 이산화탄소가 첨가되지 않은 순수한 iso-프로필알코올의 경우도 Fig. 7에서 보는 바와 같이 야세톤의 농도가 선량에 따라 거의 직선적으로 증가되어 50 kGy 조사시에는 그 농도가 0.57%에 달하였다. 또, Fig. 8에서 보는 바와 같이 iso-프로필알코올에 이산화탄소를 가하면 첨가된 이 산화탄소의 양에 따라 아세톤의 생성량이 증가됨을 알았다.

Table 6을 살펴보면 이산화탄소 농도 80%까지는

Fig. 6. G(CO) value vs. carbon dioxide pressure(\Box : 10 kGy, +: 20 kGy, \diamond : 30 kGy, \triangle : 40 kGy, x: 50 kGy).

CO ₂	Pressur	e, torr		Dose, kGy						
$\langle \% \rangle$	i-PrOH	CO2	0	10	20	30	40	50		
0.0	10	0	0	-	-	_	-	-		
50.0	10	10	0	_	_	_	_	—		
80.0	10	40	0	-	-	-	4.44	10.36		
90.0	10	90	0	-	3.67	5.67	6.82	9.75		
98.0	10	490	0	3.43	4.85	3.59	3.51	3.98		
99.0	10	990	0	3.37	3.69	3.69	3.44	3.37		
99.5	10	1990	0	3.99	4.29	3. 9 6	3.93	4.08		

Table 5. G(CO) values obtained from radiolysis of iso-Propanol-CO2 mixtures

Table 6. Acetone concentrations (% of initial iso-Propanol concentration) produced by the radiolysis of iso-Propanol-CO₂ mixture

CO2	Pressur	ė, torr			1	· · · · ·		
(%)	i-PrOH	CO ₂	0	10	20	30	40	50
0.0	10	0	0	0.12	0.24	0.42	0.46	0.57
50.0	10	10	0	0.15	0.31	0.43	0.60	0.67
80.0	10	40	· 0	0.25	0.58	0.73	0.885	1.11
90.0	10	90	0	0.41	0.87	1.14	1.33	1.59
98.0	10	490	0	0.91	1.62	2.25	2.77	3.43
99.0	10	990	0	1.38	2.61	3.51	4.52	5.69
99.5	10	1990	0	2.55	5.13	7.61	9.32	11.76

Fig. 7. Acetone obtained by the radiolysis of pure *iso*-propanol(10 torr).

아세톤의 생성량이 크게 증가되지 않으나, 90% 이 상에서는 급격한 증가를 보였다. 아세톤 생성량을 첨가된 이산화탄소의 양(torr)에 대하여 그래프를 그려보면 Fig. 9와 같은 형태를 보인다. 이 그림에 서는 아세톤의 생성량이 이산화탄소 첨가량(torr)에 따라 직선적으로 증가됨을 알 수 있다.

이들 선량별 아세톤 생성량을 방사선에너지 100 eV당의 생성된 아세톤의 분자수인 G(Acetone)값 으로 환산하면 Table 7과 같으며, 이를 그래로 나 타내면 Fig. 10과 같다. G(Acetone)값 역시 이산회 탄소의 압력에 비례하여 증가되는 형태를 보였다. 5가지의 선량 중 하나의 예로 50 kGy의 경우를 살 펴보면 순수 iso-프로필알코올만 존재할 때의 G(Acetone)값이 18이며, iso-프로필알코올 압력(10 torr) 의 199배인 1990 torr의 이산화탄소를 첨가한 경우는

Fig. 8. Acetone obtained by radiolysis the mixture of *iso*-propanol(10 torr) with various amount of carbon dioxide(\Box : 1990 torr, +: 990 torr, \diamond : 490 torr, \triangle : 90 torr, x: 40 torr, ∇ : 10 torr).

Fig. 9. Acetone concentration vs. carbon dioxide pressure(\Box : 10 kGy, +: 20 kGy, \diamond : 30 kGy, \triangle : 40 kGy, x: 50 kGy).

Journal of the Korean Chemical Society

Table 7. G(Acetone) values obtained from the radiolysis of iso-Propanol-CO2 mixtures

CO ₂	Pressur	e, torr						
(%)	i-PrOH	CO ₂	0	10	20	30	40	50
0.0	10	0		19	19	22	18	18
50.0	10	10	-	26	27	24	26	23
80.0	10	40	—	44	52	43	39	40
90.0	10	90		74	78	68	59	57
98.0	10	490		165	147	136	125	124
99.0	10	990		251	238	213	205	207
99.5	10	1990	_	464	467	461	424	428

Fig. 10. G(Acetone) value vs. carbon dioxide pressure (\Box : 10 kGy, + : 20 kGy, \diamond : 30 kGy, \triangle : 40 kGy, x : 50 kGy).

G(Acetone)값이 428로 증가하였다. G(Acetone)값 428 중 18을 iso-프로필알코올의 직접분해에 의해 생긴 G값으로 간주하면, 1990 torr의 이산화탄소의 영향에 의해 생성된 G(Acetone)값은 410이므로 이 산화탄소의 압력 10 torr당 약 2 정도씩 G(Acetone) 값이 증가된 셈이 된다. 이러한 실험결과로서 구체 적인 반응메카니즘은 알 수 없으나 이산화탄소에 의해 흡수된 방사선에너지가 어떤 경로를 통해 iso-프로필알코올로 전달되어 iso-프로필알코올로부터 아세톤을 생성시키는 반응에 기여함을 짐작할 수 있다. 일반적으로 알려진 알코올의 방사선 분해반 응을 참고로 하면 순수 iso-프로필알코올의 초기 분해반응은 다음과 같이 생각할 수 있다²⁶.

 $(CH_3)_2CHOH \rightarrow (CH_3)_2COH + \cdot H$

Vol. 35, No. 1, 1991

알코올의 1차 라디칼보다는 2차가, 2차보다는 3차 라디칼이 더 안정하다는 점을 고려하면 iso-프로필 알코올의 방사선 분해반응에서 위와 같이 3차 라 디칼이 주로 생성되리라는 가정은 타당성이 있는 것으로 생각된다. 이 라디칼은 불균등화반응(disproportionation'이나 다른 라디칼과의 반응에 의해 아세톤을 생성시킬 수 있을 것으로 생각된다.

 $2(CH_3)_2\dot{C}OH \longrightarrow (CH_3)_2CHOH + CH_3COCH_3$

 $(CH_3)_2\dot{C}OH + \cdot X \longrightarrow CH_3COCH_3 + HX$

또 순수 iso-프로필알코올의 G(Acetone)값이 18정 도로 매우 큰 사실에 대한 설명으로 다음과 같은 자동분해에 의한 연쇄반응도 고려해 볼 수 있을 것이다.

 $(CH_3)_2\dot{C}OH \longrightarrow CH_3COCH_3 + \cdot H$

 $(CH_3)_2CHOH + \cdot H \longrightarrow (CH_3)_2\dot{C}OH + H_2$

본 실험의 시료가 기채상태로서 iso-프로필알코올의 압력도 10 torr 정도로 낮아 다른 라디칼들과의 반 응기회가 적을 것이라는 점을 감안하면, 위의 연쇄 반응은 충분히 예견되나 본 실험의 결과만으로는 그 자세한 내용을 알 수 없었다.

이산화탄소는 방사선 분해되어 일산화탄소와 산 소라디칼을 생성시키는 것으로 알려져 있다.

$$CO_2 \rightarrow CO + O$$

앞서 기술한 바와 같이 본 실험에서도 G(CO)값 약 4 정도의 일산화탄소가 생성됨을 확인하였다. 따라서 비슷한 양(G(O)=4)의 산소라디칼이 생성될 것으 로 추측할 수 있는데(반응식 (2)에 의하면 G(O)=

5.16) 이 중 일부(2 정도)가 iso-프로필알코올과 다 음과 같은 반응을 하는 것으로 생각할 수 있다.

 $(CH_3)_2CHOH + O \longrightarrow (CH_3)_2\dot{C}OH + \cdot OH$

 $(CH_3)_2\dot{C}OH + \cdot OH \longrightarrow CH_3COCH_3 + H_2O$

산소라디칼의 이러한 알코율 α·수소추출반응을 잘 알려져 있으며²⁷, 본 실험에서 정랑적으로 분석되지 는 않았으나 상당량의 물이 생성되었는데, 이러한 사실도 위와 같은 반응의 가능성을 뒷받침해 주는 것으로 생각된다.

탄화수소의 생성. 여러 가지의 조성의 iso-프로 필알코올과 이산화탄소 혼합기체에 50 kGy의 방사 선을 조사시킨 후 검출된 각종 유기생성물 및 잔존 iso-프로필알코올의 상대적인 양(몰)을 측정하였으 나, 가스크로마토그래프에 의한 정량분석에 사용되 는 내부표준물질(Internal Standard)을 본 실험의 시료에는 사용할 수 없으므로 조사 전후 시료의 정량적인 비교가 어려웠다. 그러나 다른 방법으로 정량적인 비교를 하기 위해 다음과 같은 가정을 하였다.

- 일산화탄소는 이산화탄소로부터 생성된다.
- 유기생성물은 iso-프로필알코올로부터 생성된다.
- 검출되지 않은 다른 생성물은 무시한다.

이러한 가정하에서는 메탄, 에탄, C₃H_a, C₄H_b, 아 세톤 및 부틸알코올 한 분자가 생성되기 위해서 각각 1/3, 2/3, 1, 4/3, 1 및 4/3개의 *iso-프로필알코올* 분자가 분해된 것으로 생각할 수 있다. 따라서 원래 첨가된 *iso-프로필*알코올의 양에 대한 각 생성물 또는, 잔존 *iso-프로필*알코울의 몰백분율(mole%)은 다음과 같은 식에 의해 계산할 수 있다. X성분의 몰백분율

= $[X]/[[Methane] \times 1/3 + [Ethane] \times 2/3$ + $[C_3H_a] \times 1 + [C_4H_b] \times 4/3 + [Acetone] \times 1$ + $[iso-PrOH] \times 1 + [tert-BuOH] \times 4/3$ }

아 식에 의해 얻은 값들을 Table 8에 실었다. 이 표의 값들 중 탄화수소의 생성량을 이산화탄소의 압력에 대해서 나타낸 것이 Fig. 11이다. 아세톤의 경우와 마찬가지로 탄화수소들의 생성량들이 첨가된 이산화탄소의 양에 따라 변화됨을 알 수 있다.

때탄, 에탄 및 C₄H₆는 이산화탄소의 양에 따라 각각의 생성량이 증가되는 경향을 보여, 이 역시 이산화탄소로부터 생성된 산소라디칼이 이들의 생 성반응에 기여하리라는 추측을 가능케한다. 메탄,

Fig. 11. Hydrocarbons vs. carbon dioxide pressure at the dose of 50 kGy(\square : Methane, + : Ethane, \diamond : Propane, \triangle : Butane).

Table 8. The residual iso-Propanol and organic products obtained by the radiolysis of iso-Propanol-CO₂ mixture at dose of 50 kGy

	Pressure, torr		Residual			Organic pro			
(%)	<i>i</i> -PrOH	CO ₂	- <i>i-</i> PrOH - (%)	СҢ	C ₂ H ₆	C ₃ H _a	C ₄ H _b	Acet.	t-BtOH
0.0	10	0	98.63	0.88	0.47	0.16	0.03	0.57	0.01
50.0	10	10	98.35	0.58	0.27	0.29	0.04	0.87	0.04
80.0	10	40	97.71	1.05	0.34	0.35	0.08	1.11	0.11
90.0	10	90	97.08	0.91	0.35	0.49	0.13	1.59	0.10
98.0	10	490	93.58	1.44	0.91	0.63	0.41	3.43	0.55
99 .0	10	990	90.05	2.22	1.39	0.52	0.69	5.69	0.87
99.5	10	1990	80.51	5.86	2.22	0.38	0.98	11.76	1.96

예탄 및 C4H,는 그 분자구조상 iso-프로필알코올의 직접분해에 의해 생성되기는 어려운 것으로 생각되 며, iso-프로필알코올-이산화탄소 혼합기체의 방사선 분해시 아세톤이 다량 생성된다는 점을 고려하면 이들 중 메탄 및 에탄은 아세톤의 분해시 생성되는 것으로 생각된다. 아세톤의 방사선 분해반응은 다 음과 같이 방사선의 직접 작용에 의해 분해되거나²³, 산소라디칼과의 반응에 의해 메틸라디칼을 생성한 다.

 $CH_3COCH_3 \longrightarrow CO + 2 \cdot CH_3$

 $CH_3COCH_3 + O \rightarrow 2 \cdot CH_3 + CO_2$

이 라디칼들이 iso-프로필알코올 등으로부터의 수소 추출반응을 일으키면 메탄이 생성되고 메탈라디칼 끼리의 종지반응을 일으키면 에탄이 생성된다.

• $CH_3 + (CH_3)_2 CHOH \longrightarrow CH_4 + (CH_3)_2 CHOH$

 $\cdot CH_3 + \cdot CH_3 \longrightarrow C_2H_6$

C4H₆는 아세톤이나 iso-프로필알코올로부터 직접 생성되기는 어려우므로 tert-부틸알코올로부터 생성 될 가능성이 가장 높은 것으로 생각된다. Table 8에 나타난 바와 같이 tert-부틸알코올도 상당량 생성되 었는데 그 생성 메카니즘은 다음과 같은 것으로 추측된다.

 $(CH_3)_2\dot{C}OH + \cdot CH_3 \longrightarrow (CH_3)_3COH$

이로부터 물분자가 떨어져 나오고 부텐이 생성될 것으로 짐작되나, 본 실험에서 사용된 가스크로마 토그래프 분석에서는 부탄과 부텐 이성체들의 머무 른시간(retention time)이 비슷하여 서로를 분리하 지 못했다.

Fig. 11에 C₃H₀는 다른 탄화수소와 달리 이산화 탄소의 양이 증가됨에 따라 그 생성량이 잠소하는 경향을 보였는데, 이는 C₃H₀의 생성 또는 분해매카 니즘이 다른 탄화수소와 다를 가능성이 있음을 뜻 하는 것으로 생각된다. 아세톤, tert-부틸알코올 등 중간생성물로부터 생성되는 메탄, 에탄, C₄H₀ 등파는 달리 C₃H₀는 탄소수가 같은 iso-프로필알코올로부터 직접 생성될 가능성이 높다. 순수한 기체알코올의 방사선 분해반응에서는 물 한분자가 떨어져나가고 알켄을 생성시키는 반응이 잘 알려져 있다^{4.7}.

 $CH_3 - CH(OH) - CH_3 \longrightarrow CH_3 - CH = CH_2 + H_2O$

본 실험에서 C₃H_o가 프로판인지 프로펜인지는 확인되지 않았으나, C₃H_o가 이산화탄소의 압력이 증가될수록 감소된다는 실험결과를 고려하면, C₃ H_a가 프로펜일 가능성이 더 큰 것으로 생각된다. 왜냐하면 알켄은 알칸보다 더 빨리 산소원자와 반 응하는 것으로 알려져 있는데²⁹, 이산화탄소의 압력 이 커지면 방사선 조사시 산소원자의 생성량도 많 아질 것이므로 프로펜의 분해를 촉진시켜 그 결과 C₃H_a의 농도를 감소시키는 것으로 설명되어질 수 있기 때문이다.

iso-프로필알코올의 분해. Table 8의 잔존 iso-프 로필알코올 농도를 이산화탄소의 농도에 대하여 그 레프로 표시하여 Fig. 12를 얻었다. 이 경우에도 잔존 iso-프로필알코올의 농도가 이산화탄소의 농도 90% 이상에서 급격히 감소됨을 알았다. 또 소모된 iso-프로필알코올의 농도를 이산화탄소의 압력에 따라 그래프를 그려 Fig. 13을 얻었는데 비교적 좋은 직 선관계를 보였다. 이는 방사선에 의해 iso-프로필알 코올이 분해되는 속도가 이산화탄소의 양에 비례함 올 뜻하는 것으로 생각된다.

Fig. 12. Residual *iso*-propanol concentrations vs. carbon dioxide concentration after the irradiation of 50 kGy.

崔相案・晉俊夏・邊衡直

Fig. 13. Consumed iso-propanol concentration vs. carbon dioxide pressure.

선량 50 kGy를 조사했을 때 순수 iso-프로필알코올 (10 torr)의 경우 1.37%의 iso-프로필알코올이 분해 되었고, 이산화탄소 1990 torr를 첨가한 경우는 19.49 %가 분해되었다. 이것을 식 (9)에 대입하여 G(-iso-Propanol)값을 구하면 각각 5.6 및 803.4가 된다. 1990 torr의 이산화탄소 첨가에 의해서 G(-iso-Propanol)값이 797.8만큼 중가하였으므로 이산화탄소 10 torr당 4 정도씩 G값이 중가된 셈이다.

G(CO)값은 이산화탄소에 대한 일산화탄소의 양 을 기준으로 하여 구한 값이고 G-(-iso-Propanol)값 은 초기 iso-프로필알코올의 소모량을 기준으로 하여 얻은 값이므로, 이 두 값을 서로 비교하기 위해 G(iso-Propanol)값을 G(CO)값의 계산방법으로 환산 하여 G(-iso-Propanol)값을 얻고자 한다. 50 kGy 조사시 10 torr의 iso-프로필알코올에 1990 torr의 이 산화탄소가 가해집에 따라 iso-프로필알코올의 분해 량이 18.12% 증가하였으므로, 이산화탄소의 양을 기준으로 하면 0.091%가 된다(18.12%×{10 torr/19 90 torr}). 아를 식 (8)에 대입하여 G(-iso-Propanol)값을 구하면 약 4.4가 된다. 이것은 G(CO)값 4와 비슷한 값으로 상호간에 연관성이 있을 가능 성을 시사하는 것으로 생각된다. 일서의 여러 가지 실험결과에 대한 고찰에서 언급된 바와 같이 일산 화탄소는 산소라디칼을 제거해 주어야 생성되며, iso-프로필알코올은 주로 산소라디칼과의 반응에 의

해 분해된다는 가정을 수치적으로 뒷받침해 주는 실험결과로 생각된다.

겸 론

10 torr의 iso-프로필알코올에 0~1990 torr의 이 산화탄소를 혼합한 시료를 0~50 kGy의 Co-60 감 마선을 조사하고, 그 분해생성물을 기체크로마토그 래프로 분석하여 주생성물인 일산화탄소, 아세톤과 함께 메탄, 에탄 등 탄화수소와 *tert*-부틸알코올, 물 등이 생성됨을 알았다. 첨가된 이산화탄소의 양에 따른 각 생성물들의 종류와 양을 고찰하여 다음과 같은 결론을 얻었다.

1. 이산화탄소의 압력이 iso-프로필알코올의 약 50 배 이상일 때의 G(CO)값은 4 정도이며, 이 일산 화탄소는 대부분 이산화탄소로부터 생성되는 것으로 생각된다.

2. 이산화탄소의 압력이 iso-프로필알코올의 약 10 배 이하일 때는 iso-프로필알코올의 분해시 생성된 일산화탄소도 G(CO)값에 상당부분 기여함을 알았 다.

3. 메탄, 에탄, C₄H₆는 이산화탄소 첨가량에 따라 생성량들이 중가되었고, C₃H₆는 감소되었다.

4. 메탄, 예탄은 중간생성물인 아세톤의 분해에 의해 생성되고, C₃H₆는 *iso-프로필알코올*이 직접 분 해될 때 생성되는 것으로 생각된다.

5. 10 torr의 iso-프로필알코올에 첨가되는 이산화 탄소의 양에 따라 G(Acetone) 및 G(-iso-Propanol) 값이 증가되는데 이산화탄소의 압력 10 torr 증가마 다 이 G값들이 각각 2 및 4씩 증가되었다.

6. 방사선에 의해 이산화탄소로부터 일산화탄소가 생성되는 것은 iso-프로필알코올이 산소라디칼과 반 응하여 아세톤을 생성함으로써 산소라디칼을 제거해 주기 때문으로 생각된다.

본 연구는 학술원 1989년도 학술연구비의 지원을 받아 수행되었다. 이에 감사의 뜻을 표한다.

인용문 헌

1. S. U. Choi, J. Korean Chem. Soc., 6, 73(1962). 2. S. U. Choi and N. N. Lichtin, J. Am. Chem. Soc., 86, 3948(1964).

- S. U. Choi, J. Korean Chem. Soc., 14(3), 237(19 70).
- J. J. J. Myron and G. R. Freeman, Can. J. Chem., 43, 381(1965).
- 5. J. W. Fletcher and G. R. Freeman, *Cam. J. Chem.*, 45, 635(1967).
- M. Meaburn and F. W. Mellows, Trans. Faraday Soc., 61, 1701(1965).
- L. W. Sieck and R. H. Johnsen, J. Phys. Chem., 69, 1699(1965).
- 8. J. Teply, Radiat. Res. Rev., 1, 361(1969).
- G. R. Freeman, in Actions Chimiques et. Biologiques des Radiations(ed., M. Haissinsky), Masson et Cie, Paris, Vol.14, p.73, 1990.
- J. H. Jin, S. U. Choi, H. C. Pyun, and J. H. Choi, J. Korean Chem. Soc., 26(3), 135(1982).
- 11. J. H. Jin, J. H. Choi, H. C. Pyun and S. U. Choi, Bull. Korean. Chem. Soc., 9(1), 55(1988).
- A. J. Wickham, J. V. Best and C. J. Wood, Radiat. Phys. Chem., 10(2), 107(1977).
- A. Dyer and G. E. Moores, *Radiat. Phys. Chem.*, 26(3), 267(1985).
- A. Danno, Chemical Economy and Engineering Review, 6(6), 7(1974).
- J. G. Lewis et al., U. S. Patents Document 4, 175, 016/A(1979).

- 16. S. Sato et al., JAERI-M 8828(1980).
- 17. C. Willis and A. W. Boyd, Int. J. Radiat. Phys. Chem., 8, 71(1976).
- P. Harteck and S. Dondes, J. Chem. Phys., 23(5), 902(1955).
- 19. M. Steinberg, BNL 665(1961).
- A. R. Anderson, J. V. Best and D. A. Dominey, J. Chem. Soc., 3498(1962).
- S. C. Lind and D. C. Bardwell, J. Am. Chem. Soc., 47, 2675(1925).
- J. A. Hearne and R. W. Hummel, AERE-R 6040 (1969).
- Y. Ikezoe and S. Sato, Bull. Chem. Soc. Japan, 51(4), 1016(1978).
- 24. For further details consult the Ph.D. thesis of J.H. Jin, Sogang University Library, Seoul, 1987.
- 25. R. Barker, Trans. Faraday Soc., 59, 375(1963).
- J. W. T. Spinks and R. J. Woods, "An Introduction to Radiation Chemistry", John Wiley and Sons, N.Y., p. 418, 1976
- M. Anbar and D. Meyerstein, J. Phys. Chem., 68, 3184(1964).
- G. G. Meisels, "Organic Gases in Fundamental Process in Radiation Chemistry", P. Ausloos ed., John Wiley and Sons, N.Y., p. 397, 1968
- A. Kato and R. J. Cvetanovic, Can. J. Chem., 46, 235(1968).