• Title/Summary/Keyword: 유기인계

Search Result 213, Processing Time 0.027 seconds

Simultaneous determination of carbaryl & organophosphorous pesticides in water by liquid chromatography-tandem mass spectrometry (LC/MS/MS를 이용한 수중의 카바릴·유기인계 농약 동시분석)

  • Park, Keun-Young;Shin, Jung-Chul;Pyo, Dongjin
    • Analytical Science and Technology
    • /
    • v.31 no.1
    • /
    • pp.39-46
    • /
    • 2018
  • Carbaryl and seven organophosphorous pesticides were analyzed simultaneously using on-line solid phase extraction (on-line SPE) coupled with liquid chromatography tandem mass spectrometry (LC/MS/MS). The target pesticides are Carbaryl, Methyl demeton, Fenitrothion, Malathion, Parathion, Phenthoate, Diazinon, and EPN. This method includes the direct injection of $500{\mu}L$ in the water sample, a 15 min separation period using a rapid resolution liquid chromatography system with on-line SPE, and detection through electrospray ionization (ESI) positive mode. The percentage of recovery of all pesticides ranged from 85.3 % to 100 %. This method showed an accuracy of ${\geq}90.0%$, possessing limits of detection and quantification within 0.05 to $0.28{\mu}g/L$ and 0.16 to $0.89{\mu}g/L$, respectively. The correlation coefficients (r) for the calibration curves within a range of 0.5 to $8.0{\mu}g/L$ were higher than 0.99. The evaluation results showed the efficacy of the method for all contents, and no pesticides were detected in the water quality sample.

Inhibition of Acetylcholinesterase and Butyrylcholinesterase by Phosalone via Bioactivation (Phosalone의 활성화과정을 통한 acetylcholinesterase와 butyrylcholinesterase에 대한 활성 저해)

  • Lim, Geum-Choon;Han, Dae-Sung;Hur, Jang-Hyun
    • Applied Biological Chemistry
    • /
    • v.38 no.2
    • /
    • pp.174-178
    • /
    • 1995
  • The purpose of this study was to investigate a role of cytochrome $P_{450}$, for the toxicity of the phosalone in in vitro and in vivo bioactivation systems. The bimolecular inhibition rate constants$(k_i)$ of the phosalone to acetylcholinesterase(AChE) and butyrylcholinesterase(BuChE) were approximately $10^2M^{-1}{\cdot}min^{-1}$, respectively, which meant a poor inhibitor. The potency of the phosalone as an inhibitor of AChE and BuChE was increased about 300 and 40 fold, respectively, when the inhibitor and the ChE were incubated with microsomes fortified with NADPH compared with microsome alone. Piperonyl butoxide(PB) addition to these coupled systems greatly reduced the inhibition of both target enzymes by blocking a bioactivation process. The $I_{50}$ value of the Phosalone alone for rat brain AChE was 170 mg/kg. When PB was pretreated, that value was altered to 42.5 mg/kg. PB pretreatment synergized the inhibition of brain AChE with four times. Rat blood erythrocyte AChE and plasma BuChE were similarly inhibited in vivo by the phosalone and PB pretreatment didn't affect significantly the pattern of the inhibition. The in vivo studies showed different results in the role of cytochrome $P_{450}$ from those of the in vitro studies.

  • PDF

Effects of Insecticides on Enzyme Activities in Soil Environment (살충제(殺蟲劑)가 토양환경중(土壤環境中) 효소활성(酵素活性)에 미치는 영향(影響))

  • Hong, Jong-Uck;Kim, Jang-Eok
    • Applied Biological Chemistry
    • /
    • v.29 no.3
    • /
    • pp.294-303
    • /
    • 1986
  • The effects of insecticides on biochemical precesses in soil were studied by determining the effects of the chemical structure of each insecticides on enzyme activities, pesticide residue and total number of bacteria revealed when soil treated with urea was incubated at $28{\pm}1^{\circ}$ for 56 days. The inhibition effects of insectides on enzyme activites in soil decreased in the order: dithiophosphoric acid > thiophosphhoric acid > phosphoric acid > carbamate insecticides for urease and phosphatase, thiophosphoric acid > dithiophosphoric acid > phosphoric acid > carbamate insecticides for L-glutaminase and protease. The inhibition effects of organophophorus insecticides on enzyme activities in soil were maintained longer than those of carbamate insecticides. Carbamate insecticides increased the activities of protease and L-glutaminase at 56 days. When insecticides were treated in soil together with urea, the degradation of insecticides was accelerated. By treatment of insecticides, the total number of bacteria was decreased at the early stage of treatment but thereafter increased according to phosphoric acid and carbamate insecticides.

  • PDF

Inhibition of acetylcholinesterase activity by impurities in technical grades and purified flupyrazofos (Flupyrazofos 원제 및 정제품의 불순물 조성과 Acetylcholinesterase에 대한 저해 비교)

  • You, Kyoung-Youl;Cho, Boo-Yeon;Park, Dong-Sik;Hur, Jang-Hyun
    • The Korean Journal of Pesticide Science
    • /
    • v.9 no.1
    • /
    • pp.97-101
    • /
    • 2005
  • Flupyrazofos (O,O-diethyl O-1-phenyl-3-trifluoromethylpyrazo-5-yl phosphorothioate) is an organophosphorus insecticide with a pyrazole moiety which is newly developed and commercialized by SUNGBO chemical company and Korean Research Institute of Chemical Technology for effectively control against diamond back moth. This study was conducted to determine the composition and quantity of impurities in technical 1 (94.5%), technical 2 (97.6%) and purified (99.2%) flupyrazofos using GLC/MSD. Bimolecular inhibition rate constant($k_i$) with acethylcholinesterase (in vitro) and $I_{50}$ with mouse brain acetylcholinesterase (in vivo) were measured for comparing inhibitory patterns of two technicals and purified flupyrazofos. Impurities of flupyrazofos were identified as O,O,O-triethylthio-phosphoric acid (TEA), 1-phenyl-3-trifluoromethyl-5-ethoxy pyrazole(PTMEP), O,O-diethyl O-1-phenyl-3-trifluoromethylpyrazo-5-yl phosphoric acid ester(flupyrazofos oxen), O,S-diethyl O-1-phenyl-3-trifluoromethylpyrazo-5-yl phosphorothionate (S-ethyl flupyrazofos). In in vitro, technical 1 showed the fastest inhibition on AChE activity among them. And technical 1 and 2 showed 40% higher in vivo inhibition against mouse brian AChE than purified flupyrazofos did. These results could be caused by the impurities such as flupyrazofos oxen and S-methyl flupyrazofos contained in technical grades of flupyrazofos.

Simultaneous Determination of Pesticides in Water Using a GC/MS Coupled with Micro Extraction by Packed Sorbent (MEPS-GC/MS를 이용한 농약류 동시 수질분석)

  • Lee, Ki-chang;Lee, Wontae
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.37 no.5
    • /
    • pp.262-268
    • /
    • 2015
  • This study established an analytical method to simultaneously determine six organophosphorous pesticides [methyldemetone-S, diazinon, fenitrothion, parathion, phentoate, and O-ethyl O-(4-nitrophenyl) phenylphosphonothioate (EPN)] and carbaryl in water using a gas chromatography/mass spectrometry (GC/MS) system coupled with on-line micro extraction by packed sorbent (MEPS) and programmed temperature vaporizer (PTV) injector. Polystyrene divinylbenzene (PDVB) was used as a sorbent of MEPS. The effects of elution solvents, pH, elution volume and draw-eject cycles of samples on sample pretreatment process were investigated. Also, quality assurance and quality control (QA/QC) and the recovery of the pesticides in environmental samples were evaluated. The elution was performed using $30{\mu}L$ of a mixed solvent (acetone : dichloromethane = 80 : 20 (v/v)). Sample pretreatment processes were optimized with seven cycles of draw-eject of sample (1 mL) spiking an internal standard and sulfuric acid. At lower pH, the analytical sensitivity of diazinon decreased, but that of carbaryl increased. The method detection limit and the limit of quantification for this method were 0.02~0.18 and $0.08{\sim}0.59{\mu}g/L$, respectively. The method precision and accuracy were 1.5~11.5% and 83.3~129.8%, respectively, at concentrations of $0.5{\sim}5.0{\mu}g/L$. The recovery rates for all the pesticides except carbaryl in various environmental samples ranged 75.7~129.3%. The recovery rate of carbaryl in effluent sample was over 200% whereas carbaryl in drinking water, groundwater, and river water were in the acceptable range.

Cross-resistance and Inheritance of Resistance in Laboratory-selected Strains of the Brown Planthopper(Nilaparvata lugens Stal) (벼멸구의 저항성 유발, 교차저항성 및 저항성 유전에 관한 연구)

  • 박형만;최승윤
    • Korean journal of applied entomology
    • /
    • v.30 no.1
    • /
    • pp.1-9
    • /
    • 1991
  • Cross-resistance and inheritance of resistance in laboratory-selected strains of the brown planthopper to various types of the insecticides were investigated. The fenobucarb-selected ($R_{f}$), carbofuran-selected($R_{c}$), and diazinon-selected($R_{d}$) strains were 50.3, 49.2 and 5.8 times less sensitive to the corresponding insecticides than th susceptible strain. both $R_{f}$ and $R_{c}$ strains were highly resistant to the other carbamate insecticides, and moderately resistant to cypermethrin and deltamethrin, but nearly not resistant to fenvalerate and the organophosphorus insecticides except malathion and phenthate. Moderate resistance to malathion and phenthoate in the $R_{f}$ and $R_{c}$ strains was obtained at the rate of 13.0-12.0 and 8.5-7.5 times, respectively. The $R_{d}$ strain showed low levels of resistance to the carbamate, organophosphorus and pyrethroid insecticides, but negatively correlated cross-resistance to fenvalerate. Resistance of the brown planthopper to all the test insecticides was inherited by partially dominant autosomal factor(s).

  • PDF

Changes in Esterase Isozyme Activity after Selective Diets and Insecticides in Monochamus saltuarius (Gebler) Larva (북방수염하늘소(Monochamus saltuarius) 유충의 먹이와 살충제 처리에 따른 소화 효소의 활성 변화)

  • Cho, Sae-Youll;Kim, Ju-Hyun;Park, Yong-Chul
    • The Korean Journal of Pesticide Science
    • /
    • v.11 no.3
    • /
    • pp.171-178
    • /
    • 2007
  • Esterase isozymes were extracted from final instar larvae of M. saltuarius treated with selective diets and inhibitors. Twenty esterase isozymes were separated on 12% native-PAGE gel and stained with three different substrates(${\alpha}$-naphthyl acetate, ${\beta}$-naphthyl acetate, or ${\alpha}$-naphthyl butyrate). Interestingly, the isozymes of Est7(${\alpha}$-naphthyl acetate and ${\alpha}$-naphthyl butyrate) and Est6(${\beta}$-naphthyl acetate) were specifically activated in final instar larvae fed with the bark of Pinus koraiensis. However, we could not find any band from substrate ${\beta}$-naphthyl stearate. The esterase activities of Est3, Est6, and Est7 were inhibited by organophosphate and carbamate insecticides. In addition, The esterase activities of Est4, Est6, and Est7 were also inhibited by eserine. However, inhibition of esterase activities in methoprene, bornyl acetate, linal, cineol, and citral was not observed. However, It is necessary to reconfirm these results in vivo.

Integral Pest Management of the Western Flower Thrips, Frankliniella occidentalis: Optimal Time to Introduce a Natural Predator after Chemical Insecticide Treatment (꽃노랑총채벌레 종합방제 - 화학농약 처리 후 안정적 천적 투입 시기)

  • Chulyoung, Kim;Donghyun, Lee;Donghee, Lee;Eunhye, Ham;Yonggyun, Kim
    • Korean journal of applied entomology
    • /
    • v.61 no.4
    • /
    • pp.519-528
    • /
    • 2022
  • The western flower thrips, Frankliniella occidentalis, infests the hot pepper cultivated in greenhouses and has been considered to be controlled by a natural enemy, Orius laevigatus. However, sporadic outbreaks of the thrips due to fast population growth occasionally need chemical insecticide treatments. This study was designed to develop an optimal integrated pest management (IPM) by using selective insecticides along with a safe re-introduction technique of the natural enemy after the chemical insecticide treatment. First, chemical insecticides were screened to select the high toxic commercial products against F. occidentalis. Five insecticides containing active components (pyriproxyfen+spinetoram, abamectin, spinosad, acetamiprid, and chlorpyrifos) were selected among 17 commercial products. These five selected insecticides gave different toxic properties to the natural enemy, O. laevigatus. Especially, abamectin and spinetoram gave relatively low toxicity to the natural enemy compared to organophosphate or neonicotinoid. Furthermore, the five selected insecticides were assessed in their residual toxicities against O. laevigatus. Organophosphate and neonicotinoid insecticides showed relatively longer residual toxicity compared to abamectin and spinosads. Indeed, abamectin or spinetoram did not give any significant toxicity to O. laevigatus after 3 days post-treatment. These residual effects were further supported by the assessment of the chemical residue analysis of the insecticides using LC-MS/MS. These results suggest an IPM technology: (1) chemical treatment of abamectin or spinetoram against sporadic outbreaks of F. occidentalis infesting hot pepper and (2) re-introduction of O. laevigatus to the crops after 3 days post-treatment to depress the equilibrium density below an economic injury level.

Nitrate Content and Organophosphorus Pesticide Residues in Edible Part of Organic Farming Vegetables (시판 유기농법 재배 채소류의 질산염 및 유기인계 잔류농약의 함량)

  • 박영숙
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.27 no.3
    • /
    • pp.471-476
    • /
    • 1998
  • The NO3 contents and organophosphorus pesticide residues in edible part of vegetables cultivated by a conventional or an organic farming methods were determined. The NO3 contents of vegetables cultivated by the organic farming method were between 120ppm and 4,523ppm, whereas its contents of vegetables cultivated by the conventional farming method were between 89ppm and 1,575ppm. Fifty two percent of vegetables cultivated by hte organic farming method accumulated NO3 content over than 2,000ppm, whereas 82% vegetables cultivated by the conventional farming method accumulated NO3 content below than 1,000ppm. The NO3 contents of lettuce dependent on the cultivation method obviously. The NO3 contents of lettuce cultivated by a hydroponic farming method were between 4,800 and 6,500ppm, whereas those cultivated by the conventional method were between 630 and 750ppm. The organophosphorus pesticide residues in edible part of vegetables cultivated by the conventional or the organic farming methods were not detected. The NO3 contents in edible part of vegetables cultivated by the organic farming method should be considered as one of several parameters to judge a real safe vegetable to be certified by goverment.

  • PDF

Development of Analytical Method and Monitoring of Organophosphorus Pesticides in the Raw Water and Clean Water by Liquid Chromatography-Tandem Mass Spectrometry (LC/MS/MS를 이용한 유기인계 농약류의 최적 분석법 정립과 원·정수에서의 모니터링)

  • Kim, Gyung-A;Song, Mi-Jeong;Yeom, Hoon-Sik;Son, Hee-Jong;Lee, Sang-Won;Choi, Jin-Tack
    • Journal of Environmental Science International
    • /
    • v.24 no.12
    • /
    • pp.1569-1582
    • /
    • 2015
  • The analytical method for 16 organophosphorus pesticides was developed in this study. The 16 organophosphorus pesticides were analyzed by liquid chromatography-tandem mass spectrometry (LC/MS/MS) using on-line solid phase extraction (on-line SPE) with PLRP- S cartridge. Analysis of all analytes in the MS/MS was processed in the electrospray ioni-zation (ESI) positive mode. They are Azinphos ethyl, Chlorfenvinphos, Ethion, Famphur, Phosmet, Phosphamidon, Terbufos, Aspon, Chlorpyrifos-methyl, Crotoxyphos, Dichlofenthi-on, Dicrotophos, Fonofos, Thionazin, Dimethoate and Iprobenfos. Limits of detection (LODs) and Limits of quantification(LOQs) were obtained as 0.8~2.0 ng/L and 2.6~6.4 ng/L, respectively. All compounds were not detected at the 8 sampling points of the raw water and clean water.