Changes in Esterase Isozyme Activity after Selective Diets and Insecticides in Monochamus saltuarius (Gebler) Larva

북방수염하늘소(Monochamus saltuarius) 유충의 먹이와 살충제 처리에 따른 소화 효소의 활성 변화

  • Cho, Sae-Youll (Division of Metabolism, Endocrinology, and Diabetes, University of Michigan) ;
  • Kim, Ju-Hyun (Department of Plant Biotechnology Program, Division of Biotechnology, School of Biotechnology, Kangwon National University) ;
  • Park, Yong-Chul (Department of Plant Biotechnology Program, Division of Biotechnology, School of Biotechnology, Kangwon National University)
  • 조세열 ;
  • 김주현 (강원대학교 BT 특성화 학부 식물생명공학) ;
  • 박용철 (강원대학교 BT 특성화 학부 식물생명공학)
  • Published : 2007.09.30

Abstract

Esterase isozymes were extracted from final instar larvae of M. saltuarius treated with selective diets and inhibitors. Twenty esterase isozymes were separated on 12% native-PAGE gel and stained with three different substrates(${\alpha}$-naphthyl acetate, ${\beta}$-naphthyl acetate, or ${\alpha}$-naphthyl butyrate). Interestingly, the isozymes of Est7(${\alpha}$-naphthyl acetate and ${\alpha}$-naphthyl butyrate) and Est6(${\beta}$-naphthyl acetate) were specifically activated in final instar larvae fed with the bark of Pinus koraiensis. However, we could not find any band from substrate ${\beta}$-naphthyl stearate. The esterase activities of Est3, Est6, and Est7 were inhibited by organophosphate and carbamate insecticides. In addition, The esterase activities of Est4, Est6, and Est7 were also inhibited by eserine. However, inhibition of esterase activities in methoprene, bornyl acetate, linal, cineol, and citral was not observed. However, It is necessary to reconfirm these results in vivo.

소나무 수피와 잣나무 수피를 먹이로 사육한 북방수염하늘소(M. saltuarius)의 종령유충의 소화액을 추출하여 4가지 기질(${\alpha}$-naphthyl acetate, ${\beta}$-naphthyl acetate, ${\alpha}$-naphthyl butyrate, ${\beta}$-naphthyl stearate)에 대한 에스테라제(esterase) 활성도 변화를 조사하였다. ${\alpha}$-naphthyl acetate를 기질로 하여 조사한 결과 Est7이 잣나무수피를 먹인 유충에서 강하게 활성화되었다. 또한, ${\beta}$-naphthyl acetate와 ${\alpha}$-naphthyl butyrate 기질을 사용한 경우에도 Est6과 Est7이 잣나무수피를 먹인 유충에서 강한 활성이 관찰 되었다. 그러나 ${\beta}$-naphthyl stearate에서 활성화 되는 에스테라제는 관찰할 수 없었다. 추출한 소화액에 카바메이트계와 유기인계 약제를 처리한 경우 Est7을 포함하여 Est3과 Est6이 강하게 저해되는 것으로 나타났다. 또한, eserine을 처리한 경우 Est4, Est6, Est7에서 강한 활성저해가 관찰되었다. Methoprene, bornyl acetate, linal, cineol, citral을 소화액에 첨가한 경우 에스테라제의 활성저해는 관찰되지 않았으나 이상의 결과는 in vitro에서 실시된 실험으로 추후 in vivo에서 재검증이 필요 할 것이다.

Keywords

References

  1. Bolognesi, M. L., V. Andrisano, M. Bartolini, A. Cavalli, A. Minarini, M. Recanatini, M. Rosini, V. Tumiatti and C. Melchiorre (2005) Heterocyclic inhibitors of AChE acylation and peripheral sites. Farmaco. 60:465-473 https://doi.org/10.1016/j.farmac.2005.03.010
  2. Bongers, J. and G. Nogge (1970) Unspezifische esterase und proteinase der Speicheldrusen und des Darmes von Hypoderma bovis. J. Insect Physiol. 16:2127-2136 https://doi.org/10.1016/0022-1910(70)90085-5
  3. Campiche, S., G. L'ambert, J. Tarradellas and K. Becker-van Slooten (2007) Multigeneration effects of insect growth regulators on the springtail Folsomia candida. Ecotoxicol. Environ. Saf. 67(2):180-189 https://doi.org/10.1016/j.ecoenv.2006.11.009
  4. Chamberlain, W.F. (1975) Insect growth regulating agents for control of arthropods of medical and veterinary importance. J. Med. Entomol. 31:395- 400
  5. Cho S. Y., Y. M. Park and Y. C. Park (2007) Evalution of toxicity of 23 pesticides against Harmonia axyridis (Coleoptera: Coccinellidae) eggs and adults: Effect on esterase activity, hatchability, and fecundity, The korean Journal of Pesticide Science. 11(1):1-7
  6. Clements, A. N. (1967) A study of soluble esterases in Pieris brassicae. J. Insect Physiol. 13:1021-1030 https://doi.org/10.1016/0022-1910(67)90104-7
  7. Geering, K. and T. A. Freyvogel (1974) The distribution of acetylcholine esterase in the midgut of Aedes aegypti L. Comp. Biochem. Physiol. 49:775 -784 https://doi.org/10.1016/0300-9629(74)90904-9
  8. Gunning, R. V. (2006) Inhibition of carbamate- insensitive acetylcholinesterase by piperonyl butoxide in Helicoverpa armigera. J. Mol. Neurosci. 30:21-32 https://doi.org/10.1385/JMN:30:1:21
  9. Heidari, R, A. L. Devonshire, B. E. Campbell, K. L. Bell, S. J. Danian, J. G. Oakeshott and R. J. Russell (2004) Hydrolysis of organophosphorus insecticides by in vitro modified carboxyles- terase E3 from Lucilia cuprina. Insect Biochemistry and Molecular Biology. 34(4):353-363 https://doi.org/10.1016/j.ibmb.2004.01.001
  10. Hemingway, J. (2000) The molecular basis of two contrasting metabolic mechanisms of insecticide resistance. Insect Biochem. Mol. Biol. 30(11):1009-1015 https://doi.org/10.1016/S0965-1748(00)00079-5
  11. Jones, B. R. and H. R. Bancroft (1986) Distribution and probable physiological role of esterases in reproductive, digestive, and fat -body tissues of the adult cotton boll weevil, Anthonomus grandis Boh. Biochem. Genet. 24:499-508 https://doi.org/10.1007/BF00499102
  12. Kaplan, M. A. and H. Sherman (1977) Toxicity studies with methyl N-(Methylamino) carbonyl oxy-ethani midothioate. Toxicology and Applied Pharmacology 40:1-17 https://doi.org/10.1016/0041-008X(77)90110-7
  13. Kamita, S. G., A. C. Hinton, C. E. Wheelock, M D. Wogulis, D. K. Wilson, N. M. Wolf, J. E. Stok, B. Hock and B. D. Hammock (2003) Juvenile hormone (JH) esterase: why are you so JH specific? Insect Biochem. Mol. Biol. 33(12): 1261 -1273 https://doi.org/10.1016/j.ibmb.2003.08.004
  14. Kehinde, O., Okonojo, j. Kulhmann and A. Maelicke (1991) A second pathway of activation of the Torpedo acetylcholine receptor channel. Eur. J. Biochem. 200:671 -677 https://doi.org/10.1111/j.1432-1033.1991.tb16231.x
  15. Kidokoro, K., K. Iwata, Y. Fujiwara and M. Takeda (2006) Effects of juvenile hormone analogs and 20-hydroxyecdysone on diapause termination in eggs of Locusta migratoria and Oxya yezoensis. J. Insect Physiol. 52(5):473 -479 https://doi.org/10.1016/j.jinsphys.2006.01.001
  16. Kim, D. S., S. M. Lee, Y. J. Chung, K. S., Y. S. Moon and C. G. Park (2003) Emergence ecology of japanese pine sawyer, Monochamus alternatus (Coleoptera: Cerambycidae), a vector of pinewood nematode, Bursaphelenchus xylophilus. Korean J. Appl. Entomol. 42(4):307-313
  17. Kim, J. C., K. J. Kim, D. S. Kim, J. S. Han (2005) Seasonal variations of monoterpene emissions from coniferous trees of different ages in Korea. Chemosphere. 59(11): 1685 -1695 https://doi.org/10.1016/j.chemosphere.2004.10.048
  18. Lee, S. Y., J. S. Yu, S. J. Mun, S. G. Lee, C. S. Kim, S. C. Shin and G.H. Kim (2003) Fumigant and repellency effects of terpenes against the two-spotted spider mite, Tetranychus urticae (Acari: Tetranychidae). J. Asia-Pacific Entomol. 42(3):249-255
  19. Li, J. (2006) Monitoring the fate of methoprene larvicide for West Nile virus management. Water Sci. Technol. 54:395 -402
  20. Madley, I. C. and B. D. Hames (1981) An analysis of discoidin I binding sites in Dictyostelium discoideum (NC4). Biochem. J. 200:83 -91 https://doi.org/10.1042/bj2000083
  21. Martin, D., J. Bohlmann, J. Gershenzon, W. Francke and S. J. Seybold (2003) A novel sex-specific and inducible monoterpene synthase activity associated with a pine bark beetle, the pine engraver, Ips pini. Naturwissenschaften. 90(4): 173-179
  22. Potter P. M., R. M. Wadkins (2006) Carboxylester ases-detoxifying enzymes and targets for drug therapy. Curr. Med. Chem. 13(9):1045-1054 https://doi.org/10.2174/092986706776360969
  23. Rattanapan A., S. Visetson, L. Ngernsiri, J. Milne (2006) Efficiency of Thai derris extract and cypermethrin: toxicity and detoxification enzyme mechanism in the tropical armyworm, Spodop- tera litura F. Commun. Agric. Appl. Biol. Sci. 71:329-337
  24. Savelev, S., E. Okello, N. S. Perry, R. M. Wilkins and E. K. Perry (2003) Synergistic and antagon- istic interactions of anticholinesterase terpenoids in Salvia lavandulaefolia essential oil. Pharmacol. Biochem. Behav. 75(3):661 -668 https://doi.org/10.1016/S0091-3057(03)00125-4
  25. Shota, J. and K. Togashi (2001) Tansmission of Bursaphelenchus mucronatus (Nematoda: Aphelen-choididae) through feeding wounds by Monochamus saltuarius (Coleoptera: Cerambycidae). Nematology. 3:325-333 https://doi.org/10.1163/156854101317020240
  26. Smulders, C. J., T, J. Bueters, S. Vallati, R. G. van Kleef and H.P. Vijverberg (2004) Block of neuronal nicotinic acetylcholine receptors by organophosphate insecticides. Toxicol. Sci. 82(2):545 -554 https://doi.org/10.1093/toxsci/kfh269
  27. Sudderruddin, K. T. and K. H. Tan (1973) Some hydrolases and their involvement in insecticide resistance. Pans. 19:24-35
  28. Yasuyama, K. and P. M. Salvaterra (1999) Localizatiem of choline acetyltransferase-expressing neurons in Drosophila nervous system. Microsc. Res. Tech. 15:65-79
  29. Youm, J. K., H. S. Lee, S. J. Hong and J. Y. Moon (1996) The effect of insecticides(organophosphate, carbarmate) on heamolymph esterase activity in larvae of the silkworm, Bombyx mori. J. Asia-Pacific Entomol: 35(2): 191 - 192
  30. Zheng, Y. Z., W. S. Lan, C. L. Qiao, A. Mulchandani, W. Chen (2007) Decontamination of vegetables sprayed with organophosphate pesti- cides by organophosphorus hydrolase and carboxylesterase (B1). Appl. Biochem. Biotechnol. 136(3): 233-241 https://doi.org/10.1007/s12010-007-9022-x