• 제목/요약/키워드: 유기성슬러지

Search Result 248, Processing Time 0.026 seconds

Effect of H2O2 Injection and Temperature Changing on the Organic Carbon Fraction in Chromatogram Dissolved Organic Carbon (CDOC) from Thermal Pretreatment (H2O2 주입과 온도변화가 열적 전처리 후 발생 슬러리의 CDOC 유기탄소분율에 미치는 영향평가)

  • Kim, Hee-Joong;Kim, Tae-Kyoung;Kim, Youn-Kwon
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.38 no.3
    • /
    • pp.110-116
    • /
    • 2016
  • Biogas yields point of view, the possibility of reusing excess sludge treated by thermal pretreatment for the purpose of improving the efficiency of the anaerobic digestion process has been investigated in recent year. Thermal pretreatment technology was considered as a pretreatment technique to improve excess sludge properties because of the solubilization of particulate organics. As a view point of sludge reduction and recycle, however, many researchers focused on the ability of particulate hydrolysis and COD solubilization under a high temperature, and few reports have addressed on the physical/chemical characteristics changing. This research was performed to evaluate the effects of a various temperature and chemical additives on carbon formation and fractionation in treated slurry from thermal pretreatment. Based on the results, it was revealed that oxidants injection and temperature changing have significantly caused the change of carbon fractions in slurry from thermal pretreament. Especially, it was considered that the efficiencies of particle hydrolysis increased with the increase of the reaction temperature. Low molecular weight(Mw < 350 g/mol) organic carbon formation increased with the increase of oxidants injection. It was expected that results of this research will provide an overview of the characteristics of thermal pretreatement for excess sludge reduction and recycle.

Adsorption Characteristics of Heavy Metal and VOCs of Pyrolysis Char from Organic Waste Sludge (유기성 폐슬러지의 열분해 차르에 대한 중금속 및 VOCs 흡착특성)

  • Park, Sang-Sook;Kang, Hwa-Young
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.27 no.2
    • /
    • pp.130-137
    • /
    • 2005
  • This research programme include investigation of the adsorption behavior of heavy metals and VOCs by Pyrolysis char for using landfill cover material. The volatile potions in the sludge gasified during the pyrolysis period and gave birth to porosity throughout the matrix. The result of the ad/desorption experiment of nitrogen to find out the formation of some pore by the gasification of the volatile matter, we can certify that the pyrolysis char($14.56\;m^2/g$) has increased twice more than the organic wasted sludge($6.68\;m^2/g$) in specific surface area. The pyrolysis char has the adsorption characteristic of medium type of Type II and V in BDDT classification, and showed a little micro pore. In the adsorption experiment of ethylbenzene and toluene, as a result of applying the Freundlich adsorption isotherms, the pyrolysis char was higher in the adsorptivity of ethylbenzene and toluene than the granite and the organic wasted sludge. The results of the heavy metal adsorption test for the char indicated that it had some ability of adsorption. It is suggest that pyrolysis char has some advantages for utilizing as landfill covers because the pyrolysis char can adsorb/absorb hazardous substances from the landfill sites and inhibit the ground water and soil contamination.

Basic research for the reuse of algae by-products using vermicomposting (지렁이 퇴비화에 의한 조류 부산물 재활용 가능성에 대한 기초 연구)

  • Lee, Chang-Ho;Yang, Yong-Woon
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.18 no.4
    • /
    • pp.69-76
    • /
    • 2010
  • After feeding mixed samples, VS ranged from 60 to 80% of total costs in 15 days. EC ranged from1.21 to 2.45, 1.25 to 2.1 and 1.2 to 1.88mS/cm when worms were fed with a mixture of by-products of tidal current and sewage sludge, a mixture of by-products of algae producy, and food wastes and a mixture of by-products of algae producy, sewage sludge and food wastes. That means the kinds of mixture don't have any negative impacts on worms survival. With the feed with a mixture of by-products of algae producy and food wastes and a mixture of by-products of algae producy, sewage sludge and food wastes, pH shows stable 5.4 to 6.7, and 6.2 to 7.4 where is suitable for worms. But a mixture of by-products of algae producy and sewage sludge is out of proper scope for raising worms, in other words, extra care will be necessary. In case of Eh, a mixture of by-products of algae producy and sewage sludge make eh negative (-) in early stage so also when feeding worms, also extra care will be needed. NaCl ranged from 0.32 to 0.82% or form 0.23 to 0.61% when a mixture of by-products of algae producy and food wastes and a mixture of by-products of algae producy, sewage sludge and food wastes were fed. So taking care of salts will be essential whenever feeding.

A Deduction of Optimum Conditions as Mixing Ratio of CWOS and Loess for Sewage Sludge Conditioning (하수슬러지 개량을 위한 CWOS와 황토의 혼합비율에 따른 최적조건의 도출)

  • Jung, Yoo-Jin;Ju, Yuen-Gyung;Sung, Nak-Chang
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.10 no.2
    • /
    • pp.125-131
    • /
    • 2002
  • This study was carried out to evaluated for dewaterability of sewage sludge using waste oystershell and loess. The Jar-Test and the Buchner funnel test were proceeded for the assessment of dewaterability of a thickened sludge and digested sludge. TTF(Time to Filter), SRF(Specific Resistance to Filtration) were adopted as the valuation indices of sludge dewaterability. Dewatering conditioner which composed of both oystershell and loess is much dewaterable than the one composed of only oystershell. In the course of combining with oystershell and loess, the following fact was found that the dewaterability of the combination which have the higher ratio of oystershell than that of loess is superior. The most suitable oystershell :loess ratio of dewatering conditioner is 9:1 in treating both thickened sludge and digested sludge.

  • PDF

Improvement of Solubilization and Anaerobic Biodegradability for Sewage Sludge Using Ultrasonic Pre-treatment (하수슬러지의 초음파 전처리를 통한 가용화 및 혐기성 생분해도 향상)

  • Lee, Chae-Young;Park, Seung-Yong
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.16 no.3
    • /
    • pp.83-90
    • /
    • 2008
  • The ultrasonic pre-treatment of sewage sludge (SS) was investigated to increase soluble organic material and to improve anaerobic biodegradability. Ultrasonic disintegration of SS increased the amount of soluble chemical oxygen demand (SCOD), protein and carbohydrate concentrations whereas particle size decreased due to the break-up of cell walls. In terms of anaerobic biodegradability, ultrasonic pre-treatment enhanced the anaerobic biodegradation of SS, leading to the methane gas production improvement. Biochemical methane potential (BMP) of SS was 211.3 ml $CH_4/gVS$ whereas BMP after ultrasonic pre-treatment was 294.3 ml $CH_4/gVS$. The improvement in BMP for SS treated with ultrasonic disintegration was as high as 40 %. This result indicated that disintegration of SS was efficient for enhancing anaerobic biodegradability.

  • PDF

Effect on nitrogen removal in the intermittent aeration system with the anaerobic archaea added (혐기성 아키아 주입이 간헐폭기 시스템에서 질소제거에 미치는 영향)

  • Lee, Sang-Hyung;Park, Noh-Back;Park, Sang-Min;Jun, Hang-Bae
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.27 no.11
    • /
    • pp.1186-1192
    • /
    • 2005
  • The relationship between bacteria and anaerobic archaea, sludge yield coefficient and nitrogen removal rate were investigated in intermittent aeration systems(I/A) with added archaea, I/A and conventional activated sludge system. As the archaea solution was added to the I/A reactor, organic removal rate as well as nitrogen removal rate increased. Also, sludge production rate in I/A system added the archaea was maintained lower than other systems because sludge yield coefficient was decreased due to the role of anaerobic archaea such as anaerobic degradation of organics. The experimental data supported the possibility of symbiotic activated sludge system with anaerobic archaea under intermittent aeration, leading to the enhanced nitrogen removal. Crucial results to be presented are: 1) specific oxygen utilization rate(SOUR) of the I/A-arch system was $2.9\;mg-O_2/(g-VSS{\cdot}min)$. SOUR and nitrification rate of the sludge from the I/A-arch system was higher than those from the I/A and A/S reactors. 2) Removal efficiencies of $TCOD_{Cr}$ in the I/A-arch, I/A and A/S reactors were 93, 90 and 87%, respectively. 3) Nitrification occurred successfully in each reactor, while denitrification rate was much higher in the I/A-arch reactor. Efficiencies of TN removal in the I/A-arch, I/A and A/S reactors were 75, 63 and 33%, respectively.

Effective correlation between coagulation efficiency and the sludge settling characteristic (슬러지 응집효율이 침강특성에 미치는 상관관계에 대한 연구)

  • Han, Gee-Bong;Yoon, Ji-Hyun
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.14 no.1
    • /
    • pp.151-159
    • /
    • 2006
  • In these days, the importance of sludge treatment is emerging due to the London Convention, so this study was conducted to propose the alternatives for the improved sludge treatment on the organic wastewater and sewage sludge with JAR test and settling column equipped with stirrer. The minimum coagulant dosage to earn the optimum sludge settling efficiency resulted from 200mg/l and each critical sludge settling interface showed no distinct difference when PAC was dosed over 200mg/l. Accordingly, Clarification Rate(CR) with 200mg/l dosage was calculated to CR=(Ho-Ht) / Ho=1-0.4=0.6 because the critical sludge settling height stopped at 0.4. The settling velocity of sludge interface was decreased with the increase of MLSS concentration but rather increased with MLSS concentration over 1,000mg/l. This resulted from positive effect of interacted coagulation for floc formation by transfer to the zone of compressed settling when MLSS concentration increased over 1,000mg/l. The settling velocity of sludge interface showed $28.66{\times}10^{-3}/min$ for average settling velocity of sewage sludge which is 6.7 times higher than $4.25{\times}10^{-3}/min$ for average settling velocity of organic wastewater sludge. The increasing rate of CR for organic wastewater activated sludge was higher than that of settling velocity under 200mg/l of PAC dosage but settling velocity was higher than CR over 200mg/l of PAC dosage. However, in case of sewage sludge, the differential rate of CR was low when PAC dosage was increased but the settling velocity was suddenly increased with over 200mg/l dosage. Therefore coagulation effect was more efficient to MLSS settling velocity rather than SS removal effect in the supernatant.

  • PDF

Investigation of the Optimum Operational Condition of Bio-Hydrogen Production from Waste Activated Sludge (폐활성 슬러지로부터 생물학적 수소 생산을 위한 최적 조건 연구)

  • Kim, Dong-Kun;Lee, Yun-Jie;Yu, Myong-Jin;Pak, Dae-Won;Kim, Mi-Sun;Sang, Byoung-In
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.28 no.4
    • /
    • pp.362-367
    • /
    • 2006
  • Waste activated sludge(WAS) collected from domestic wastewater treatment plant is biomass that contains large quantities of organic matter. However, relevant literature show that the bio-hydrogen yield using WAS was too low. In this study, the effect of pretreatment of WAS on hydrogen yield was investigated. Pretreatment includes acid and alkali treatments, grinding, heating, ozone and ultrasound methods. After pretreatment organic matters of WAS were solubilized and soluble chemical oxygen demand(SCOD) was increased by 14.6 times. Batch experiments were conducted to investigate the effects of pre-treatment methods and buffer solution, hydrogen partial pressure, and sodium ion on hydrogen production from WAS by using heated anaerobic mixed cultures. Experimental results showed that addition of buffer solution, efficient pre-treatment method with alkali solution, and gas sparging condition markedly increased the hydrogen yield to 0.52 mmol $H_2/g$-DS.

Harmful Materials treatment in Shipboard sewage by SBR process with BM (BM 미생물제제를 이용한 선박 오·폐수 내 유해물질처리)

  • Kim, In-Soo;Lee, Eon-Sung;Ha, Shin-Young;Jeong, Kyoung-Chul;Koh, Sung-Cheol
    • Journal of Navigation and Port Research
    • /
    • v.38 no.6
    • /
    • pp.601-606
    • /
    • 2014
  • Lab scale experiment study was carried out for biological treatment process development in shipboard. SBR(Sequence Batch Reactor) process with BM(Beneficial Microorganisms) was investigated for practical application on shipboard sewage treatment. From the results it was suggested that SBR process with BM might be a suitable process in terms of harmful materials removal. By adding BM to SBR system, the useful species of microorganisms and EPS(Extracellar Polymetric Substances) in sludge was increased. It was found that the biodegrability and harmful organic compounds like VOCs and harmful inorganic compounds like heavy metals. was reduced over 70%. As far as reclamation water is considered, this process is very advantageous to special environments such as cruise ships, because the method of adding BM makes it unnecessary to add other facilities on the SBR system.

Biogas production using organic waste (유기성 폐기물을 이용한 바이오가스 생산)

  • Yoo, Eunsil;Hong, Soonhyouk;Kim, Daeyoung;Jun, Haks
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2011.11a
    • /
    • pp.110.2-110.2
    • /
    • 2011
  • 바이오가스 생산은 현재 정부에서 추진하고 있는 저탄소 녹색성장으로 인해 더욱 그 가치의 중요성이 부각되고 있다. 스웨덴 Scandinavian Biogas Fuel AB(SBF) 사의 바이오 가스 생산 기술을 이용함으로 소화효율을 개선하고 바이오가스 발생량을 극대화하였다. 전국 403개 공공하수처리시설 중 소화조가 설치된 처리시설은 65 개소이며 이중 57 개소에서 총 64개 소화조를 운영 중이다. 하지만 국내 소화조의 효율은 유입수질 저하, 운영, 관리 미숙으로 인해 전진국의 1/4 수준으로 에너지 이용률이 미미한 편이다. 환경부는 2010년부터 에너지 이용, 생산사용 확대, 추진을 위해 하수처리시설별 이용 가능한 에너지 잠재력의 종류, 양, 지역 내 수요자, 공급자 의 현황 규모 등을 정리해 2012년부터 에너지 이용사업 확대를 추진한다. SBF의 기술을 바탕으로 하수처리시설에서 들어오는 하루 슬러지 $1370m^3$와 음식물쓰레기 180t을 함께 처리하며 바이오가스 생산량을 더욱 늘렸다. 각 $7,000m^3$의 달걀모양(egg shape) 소화조 2개를 운영하며 생 슬러지와 음식물 쓰레기 처리 후 바로 소화조로 투입, 혐기 소화하는 방식이며 슬러지 최종처분방법은 탈수 후 소각된다. 반입되는 생 슬러지의 평균 TS 1.7%, VS 63% 이며 농축 후에는 평균 TS 9%, VS 75% 이다. 또 소화조로 들어가는 음식물 쓰레기는 평균 TS 8%, VS 85% 이며 소화 후 평균 TS 3.6% VS 59% 이다. 그리고 소화조의 pH는 7.3~7.8,유기산의 농도는 150mg/L~350mg/L, 가스발생량은 하루 평균 $26,500Nm^3$이며 소화효율은 평균 67%이다. 혐기성소화는 산소가 없는 무 산소 상태 에서 분해 가능한 유기물을 분해시켜 메탄으로 전환시키고 우리는 현재 이 가스를 소화조 가온에 사용하고, 판매하고 있다. 소화효율을 높이기 위하여 가온과 교반이 행해지는데 가온방식은 직접가온방식(증기주입식)과 간접가온방식(열교환방식)이 있다. 그중 우리는 간접가온방식을 채택하여 소화효율을 높였고 일반중온 혐기소화온도보다 약간 높은 $38^{\circ}C$로 운전한다. 그리고 일반적으로 알려진 교반방식인 가스교반, 기계교반, 이 둘은 병행한 교반이 아닌 독자적인 방법을 이용, 소화조 내의 슬러지가 정체되어 교반되지 않는 부분을 최소화 하였다. 이때 미생물이 투입되기 힘든 소화조 아래 쪽 으로도 고루분포 되어 슬러지를 이용 하게 되고 소화조 상하부의 온도차가 $1^{\circ}C$ 이하로 거의 완벽한 교반상태를 보여 줌 으로써 소화효율을 최대한으로 한다. 더욱이 소화일수 부족으로 인한 전반적 소화효율 저하가 발생하지 않도록 input과 output 조절을 통한 적정소화일수 20~25일을 최대한 맞추어 운전하여 소화조 설계용량의 평균 90%를 활용하고 있다.

  • PDF