• Title/Summary/Keyword: 유건

Search Result 57, Processing Time 0.018 seconds

Fermentation Efficiency and Effect on Morphological Change of Nitrogen and Phosphorous with the Litter Types of Cowshed (우사의 깔짚 종류에 따른 발효 효율과 질소와 인의 형태 변화에 미치는 영향)

  • Ryoo, Keon Sang
    • Journal of the Korean Chemical Society
    • /
    • v.66 no.2
    • /
    • pp.86-91
    • /
    • 2022
  • The manure made of chaff and sawdust as litter was collected separately at a cowshed of a livestock farm in Andondg city. The fermentation efficiency of excreta is greatly influenced by the type and characteristics of litter and a factor to be considered for reducing N and P, the causes of eutrophication. Changes in weight with temperature and constituents of sample were examined using TG-DTA and XRF, respectively. NO2-, NO3-, and PO43- ions and NH4+, T-P and T-N eluted from manure by rain were analyzed using ion chromatograph and UV/Vis spectrometry, respectively. As a result, the fermentation efficiency of excreta in sawdust manure is three times higher as compared with chaff manure. The higher the fermentation efficiency, ammonia nitrogen was highly de-nitrogenated and organic phosphorous were also changed into phosphorous ions. Furthermore, phosphorous ions can be removed by transforming insoluble salts such as calcium phosphate (CaHPO4·3H2O) and struvite (NH4MgPO4·6H2O) with addition of Ca and Mg.

Study on the Morphological Change and Reduction Plan of Nitrogen and Phosphorous in Litter and Manure of Cow House (우사의 깔짚과 퇴비에 있는 질소와 인의 형태적 변화와 저감 방안에 관한 연구)

  • Kim, Younjung;Ryoo, Keon Sang
    • Journal of the Korean Chemical Society
    • /
    • v.65 no.4
    • /
    • pp.249-253
    • /
    • 2021
  • Litter and manure were obtained at a cow house of a livestock farm in Andondg city. We examined the change of formation of nitrogen and phosphorous from these samples and tried to suggest a more useful and realistic way for removing them. Constituent and its content of sample were identified by XRF. NO2-, NO3-, and PO43- ions and NH4+, T-P and T-N released from sample were analyzed using ion chromatograph and UV/Vis spectrometry, respectively. As the results of this study, the ammonia nitrogen in the early stage of cow excretion is a need to make an ammonia gas state that can be immediately volatile by increasing the pH. Nitrogen and phosphorous, the main source of nutrition in green algal bloom can be removed by transforming insoluble salts such as calcium phosphate (CaHPO4·3H2O) and struvite (NH4MgPO4·6H2O), respectively, with addition of Ca and Mg after stimulating fermentation of manure.

Environmental Pollutants in Streams of Andong District and Insect Immune Biomarker (안동지역 하천의 환경오염물질과 곤충면역 생체지표 분석)

  • Ryoo Keon Sang;Ko Seong-Oon;Cho Sunghwan;Lee Hwasung;Kim Yonggyun
    • Korean journal of applied entomology
    • /
    • v.44 no.2
    • /
    • pp.97-108
    • /
    • 2005
  • Samples of water, soil, and sediment were taken from 10 streams near Andong, Korea in May 2004. To assess the degree of environmental pollution of each stream, chemical pollutants such as total notrogen (T-N), total phosphorus (T-P), chemical oxygen demand (COD), heavy metals, organophosphorus pesticides, organochlorine pesticides, and dioxin-like PCB congeners were analyzed by standard process tests or U.S. EPA methods. In addition, biomarkers originated from insect immune systems of beet armyworm, Spodoptera exigua, were used to analysis of the environmental samples. Except Waya-chun stream showing T-N content of 9.12 mg/L, most streams were contaminated with relatively low levels of overall pollutants in terms of T-N, T-P, and COD, compared to their acceptable environmental levels designated by the Ministry of Environment. Contents of Pb and Cd in samples of each stream were much lower than environmentally permissible levels. However, several times higherconcentrations of Pb and Cd were found in locations at Mi-chun, Kilan-chun, and Hyunha-chun streams, in comparison with other streams. Diazinon, parathion, and phenthoate compounds among organophosphorus pesticides were detected as concentrations of 0.19, 0.40, and $1.13\;{\mu}g/g$, respectively, from soil sample collected in the vicinity of Mi-chun stream. On the other hand, 16 organochlorine pesticides and 12 dioxin-like PCB congeners, known as endocrine disrupting chemicals, selected in this study were not found above the limit of detection. Biomarker analyses using insect immune responses indicated that Waya-chun stream was suspected as exposure to environmental pollutants. Limitation and compensation of both environmental analysis techniques are discussed.

Adsorptive Removal of Radionuclide Cs+ in Water using Acid Active Clay (산활성 점토를 이용한 수중의 방사성 핵종 Cs+ 흡착 제거)

  • Lee, Jae Sung;Kim, Su Jin;Kim, Ye Eun;Kim, Seong Yun;Kim, Eun;Ryoo, Keon Sang
    • Journal of the Korean Chemical Society
    • /
    • v.66 no.2
    • /
    • pp.78-85
    • /
    • 2022
  • Natural white clay was treated with 6 M of H2SO4 and heated at 80℃ for 6 h under mechanical stirring and the resulting acid active clay was used as an adsorbent for the removal of Cs+ in water. The physicochemical changes of natural white clay and acid active clay were observed by X-ray Fluorescence Spectrometry (XRF), BET Surface Area Analyser and Energy Dispersive X-line Spectrometer (EDX). While activating natural white clay with acid, the part of Al2O3, CaO, MgO, SO3 and Fe2O3 was dissolved firstly from the crystal lattice, which bring about the increase in the specific surface area and the pore volume as well as active sites. The specific surface area and the pore volume of acid active clay were roughly twice as high compared with natural white clay. The adsorption of Cs+ on acid active clay was increased rapidly within 1 min and reached equilibrium at 60 min. At 25 mg L- of Cs+ concentration, 96.88% of adsorption capacity was accomplished by acid active clay. The adsorption data of Cs+ were fitted to the adsorption isotherm and kinetic models. It was found that Langmuir isotherm was described well to the adsorption behavior of Cs+ on acid active clay rather than Freundlich isotherm. For adsorption Cs+ on acid active clay, the Langmuir isotherm coefficients, Q, was found to be 10.52 mg g-1. In acid active clay/water system, the pseudo-second-order kinetic model was more suitable for adsorption of Cs+ than the pseudo-first-order kinetic model owing to the higher correlation coefficient R2 and the more proximity value of the experimental value qe,exp and the calculated value qe,cal. The overall results of study showed that acid active clay could be used as an efficient adsorbent for the removal of Cs+ from water.

Study on Adsorption of PO43--P in Water using Activated Clay (활성 백토를 이용한 수중의 인산성 인(PO43--P) 흡착에 관한 연구)

  • Hwang, Ji Young;Jin, Ye Ji;Ryoo, Keon Sang
    • Journal of the Korean Chemical Society
    • /
    • v.65 no.3
    • /
    • pp.197-202
    • /
    • 2021
  • In this study, activated clay treated with H2SO4 (20% by weight) and heat at 90 ℃ for 8 h for acid white soil was used as an adsorbent for the removal of PO43--P in water. Prior to the adsorption experiment, the characteristics of activated clay was examined by X-ray Fluorescence Spectrometry (XRF) and BET surface area analyser. The adsorption of PO43--P on activated clay was steeply increased within 0.25 h and reached equilibrium at 4 h. At 5 mg/L of low PO43--P concentration, roughly 98% of adsorption efficiency was accomplished by activated clay. The adsorption data of PO43--P were introduced to the adsorption isotherm and kinetic models. It was seen that both Freundlich and Langmuir isotherms were applied well to describe the adsorption behavior of PO43--P on activated clay. For adsorption PO43--P on activated clay, the Freundlich and Langmuir isotherm coefficients, KF and Q, were found to be 8.3 and 20.0 mg/g, respectively. The pseudo-second-order kinetics model was more suitable for adsorption of PO43--P in water/activated clay system owing to the higher correlation coefficient R2 and the more proximity value of the experimental value qe,exp and the calculated value qe,cal than the pseudo-first-order kinetics model. The results of study indicate that activated clay could be used as an efficient adsorbent for the removal of PO43-P from water.

Study on Causes and Countermeasures for the Mass Death of Fish in Reservoirs in Andong-si (안동시 저수지에서의 대량 어류 폐사에 대한 원인과 대책에 관한 연구)

  • Su Ho Bae;Sun Jin Hwang;Youn Jung Kim;Cheol Ho Jeong;Seong Yun Kim;Keon Sang Ryoo
    • Korean Journal of Environmental Agriculture
    • /
    • v.42 no.1
    • /
    • pp.52-62
    • /
    • 2023
  • This study focused on determining the specific causes and prevention methods of mass fish deaths occurred in five reservoirs (Gagugi, Neupgokgi, Danggokgi, Sagokji, and Hangokji) in Andong-si. For this purpose, a survey of agricultural land and livestock in the upper part of the reservoirs and analysis of water quality in the reservoir irrespective of whether it rains or not were conducted. We attempted to examine the changes in dissolved oxygen (DO) in the surface and bottom layers of reservoirs and changes in DO depending on the amount of livestock compost and time. Based on the above investigations, treatment plans were established to efficiently control the inflow of contaminated water into reservoirs. The rainfall and farmland areas in the upper part of the reservoir were investigated using Google and aviation data provided by the Ministry of Land, Infrastructure, and Transport. The current status of livestock farms distributed around the reservoirs was also examined because compost from these farms can flow into the reservoir when it rains. Various water quality parameters, such as phosphate phosphorus (PO4-P) and ammonium nitrogen (NH3-N), were analyzed and compared for each reservoir during the rainy season. Changes in the DO concentration and electrical conductivity (EC) were also observed at the inlet of the reservoir during raining using an automated instrument. In addition, DO was measured until the concentration reached 0 ppm in 10 min by adding livestock compost at various concentrations (0.05%, 0.1%, 0.3%, and 0.5% by wt.), where the concentration of the livestock compost represents the relative weight of rainwater. The DO concentration in the surface layer of reservoirs was 3.7 to 5.3 ppm, which is sufficient for fish survival. However, the fish could not survive at the bottom layer with DO concentration of 0.0-2.1 ppm. When the livestock compost was 0.3%, DO required 10-19 h to reach 0 ppm. Considering these results, it was confirmed that the DO in the bottom layer of the reservoir could easily change to an anaerobic state within 24 h when the livestock compost in the rainwater exceeds 0.3%. The results show that the direct cause of fish mortality is the inflow of excessive livestock compost into reservoirs during the first rainfall in spring. All the surveyed reservoirs had relatively good topographical features for the inflow of compost generated from livestock farms. This keeps the bottom layer of the reservoir free of oxygen. Therefore, to prevent fish death due to insufficient DO in the reservoir, measures should be undertaken to limit the amount of livestock compost flowing into the reservoir within 0.3%, which has been experimentally determined. As a basic countermeasure, minerals such as limestone, dolomite, and magnesia containing calcium and magnesium should be added to the compost of livestock farms around the reservoir. These minerals have excellent pollutant removal capabilities when sprayed onto the compost. In addition, measures should be taken to prevent fish death according to the characteristics of each reservoir.

Influence of a chemical additive on the reduction of highly concentrated ammonium nitrogen(NH4+-N) in pig wastewater (양돈 폐수로부터 고농도 암모니아성 질소의 감소를 위한 화학적 첨가제의 영향)

  • Su Ho Bae;Eun Kim;Keon Sang Ryoo
    • Korean Journal of Environmental Biology
    • /
    • v.40 no.3
    • /
    • pp.267-274
    • /
    • 2022
  • Excess nitrogen (N) flowing from livestock manure to water systems poses a serious threat to the natural environment. Thus, livestock wastewater management has recently drawn attention to this related field. This study first attempted to obtain the optimal conditions for the further volatilization of NH3 gas generated from pig wastewater by adjusting the amount of injected magnesia (MgO). At 0.8 wt.% of MgO (by pig wastewater weight), the volatility rate of NH3 increased to 75.5% after a day of aeration compared to untreated samples (pig wastewater itself). This phenomenon was attributed to increases in the pH of pig wastewater as MgO dissolved in it, increasing the volatilization efficiency of NH3. The initial pH of pig wastewater was 8.4, and the pH was 9.2 when MgO was added up to 0.8 wt.%. Second, the residual ammonia nitrogen (NH4+-N) in pig wastewater was removed by precipitation in the form of struvite (NH4MgPO4·6H2O) by adjusting the pH after adding MgO and H3PO4. Struvite produced in the pig wastewater was identified by field emission scanning electron microscopy (FE-SEM) and X-ray diffraction (XRD) analysis. White precipitates began to form at pH 6, and the higher the pH, the lower the concentration of NH4+-N in pig wastewater. Of the total 86.1% of NH4+-N removed, 62.4% was achieved at pH 6, which was the highest removal rate. Furthermore, how struvite changes with pH was investigated. Under conditions of pH 11 or higher, the synthesized struvite was completely decomposed. The yield of struvite in the precipitate was determined to be between 68% and 84% through a variety of analyses.