• Title/Summary/Keyword: 위협 판단 알고리즘

Search Result 17, Processing Time 0.027 seconds

The Performance Evaluation of Missile Warning Radar for GVES (지상기동 장비용 미사일 경고 레이더의 성능 평가)

  • Park, Gyu-Churl;Hong, Sung-Yong
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.20 no.12
    • /
    • pp.1333-1339
    • /
    • 2009
  • A MWR(Missile Warning Radar) of GVES(Ground Vehicle Equipment System) has to effectively decide the threat for a detected target. Linear Approximation Fitting(LAF) and Weighted Linear Approximation Fitting(WLAF) algorithm is proposed as algorithm for a threat decision method. The target is classified into a threat or non-threat using a boundary condition of the angular rate, and the boundary condition is determined using probability model simulation. This paper confirms the performance of proposed threat decision algorithm using measurement.

The Azimuth Calculation Algorithm of Pulse-Doppler Radar for GVES (지상 기동 장비용 펄스 도플러 레이더의 방위각 계산 알고리즘)

  • Park, Gyu-Churl;Ha, Jong-Soo
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.21 no.9
    • /
    • pp.947-954
    • /
    • 2010
  • The decision of threat target in the MWR(Missile Warning Radar) of GVES(Ground Vehicle Equipment System) such as MBT(Main Battle Tank) is very important. Threat decision is judged by angular rate and the accurate azimuth calculation for good threat decision is very important. The angular rate is dependent upon the direction of an approaching target. The target is classified into a threat or non-threat using a boundary condition of the angular rate. This paper presents the eighth azimuth calculation methods and compares the results.

Threat Decision Algorithm of Missile Warning Radar Using Azimuth Angular Rate (방위각 변화율을 이용한 방호용레이다 위협 판단 알고리즘)

  • Ha, Jong-Soo
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.11 no.1
    • /
    • pp.93-101
    • /
    • 2008
  • It is difficult for a MWR(Missile Warning Radar) to perform a threat decision accurately since there is no tracking part which gives more accurate threat information to the MWR. In this paper, the threat decision algorithm is proposed using an azimuth angular rate to improve the accuracy. The azimuth angular rate is dependent upon the direction of an approaching target. The target is classified into a threat or non-threat using a boundary condition of the azimuth angular rate. The boundary condition is determined using the Monte-Carlo simulation. The performance of the proposed algorithm is evaluated using this condition at field tests of MWR. The efficiency of the proposed method for the threat decision is proved by comparing the results of field tests with the simulation results.

A Study of the Submarine Periscope Detection Algorithm using Characteristic of Target HRRP Information

  • Jin-Hyang Ahn;Chi-Sun Baek
    • Journal of the Korea Society of Computer and Information
    • /
    • v.29 no.1
    • /
    • pp.131-138
    • /
    • 2024
  • The ability of Combat Management System(CMS) to respond quickly and accurately to threat to a naval vessel is directly related to the survivability and combat power of the vessel. However, current method for detecting enemy submarine periscope in CMS rely on manual and subjective method that require operators to manually verify and analyze information received from sensor. This delays the response time to the threat, making the vessel less viable. This paper introduces a periscope detection algorithm that classifies the plot information generated by High Resolution Range Profile(HRRP) into probability-based suspicion classes and dramatically reduces threat response time through classified notifications. Algorithm validation showed 133.3791 × 106 times faster and 12.78%p higher detection rate than operator, confirming the potential for reduces threat response time to increase vessel survivability.

3-Step Security Vulnerability Risk Scoring considering CVE Trends (CVE 동향을 반영한 3-Step 보안 취약점 위험도 스코어링)

  • Jihye, Lim;Jaewoo, Lee
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.27 no.1
    • /
    • pp.87-96
    • /
    • 2023
  • As the number of security vulnerabilities increases yearly, security threats continue to occur, and the vulnerability risk is also important. We devise a security threat score calculation reflecting trends to determine the risk of security vulnerabilities. The three stages considered key elements such as attack type, supplier, vulnerability trend, and current attack methods and techniques. First, it reflects the results of checking the relevance of the attack type, supplier, and CVE. Secondly, it considers the characteristics of the topic group and CVE identified through the LDA algorithm by the Jaccard similarity technique. Third, the latest version of the MITER ATT&CK framework attack method, technology trend, and relevance between CVE are considered. We used the data within overseas sites provide reliable security information to review the usability of the proposed final formula CTRS. The scoring formula makes it possible to fast patch and respond to related information by identifying vulnerabilities with high relevance and risk only with some particular phrase.

Security tendency analysis techniques through machine learning algorithms applications in big data environments (빅데이터 환경에서 기계학습 알고리즘 응용을 통한 보안 성향 분석 기법)

  • Choi, Do-Hyeon;Park, Jung-Oh
    • Journal of Digital Convergence
    • /
    • v.13 no.9
    • /
    • pp.269-276
    • /
    • 2015
  • Recently, with the activation of the industry related to the big data, the global security companies have expanded their scopes from structured to unstructured data for the intelligent security threat monitoring and prevention, and they show the trend to utilize the technique of user's tendency analysis for security prevention. This is because the information scope that can be deducted from the existing structured data(Quantify existing available data) analysis is limited. This study is to utilize the analysis of security tendency(Items classified purpose distinction, positive, negative judgment, key analysis of keyword relevance) applying the machine learning algorithm($Na{\ddot{i}}ve$ Bayes, Decision Tree, K-nearest neighbor, Apriori) in the big data environment. Upon the capability analysis, it was confirmed that the security items and specific indexes for the decision of security tendency could be extracted from structured and unstructured data.

Malicious Insider Detection Using Boosting Ensemble Methods (앙상블 학습의 부스팅 방법을 이용한 악의적인 내부자 탐지 기법)

  • Park, Suyun
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.32 no.2
    • /
    • pp.267-277
    • /
    • 2022
  • Due to the increasing proportion of cloud and remote working environments, various information security incidents are occurring. Insider threats have emerged as a major issue, with cases in which corporate insiders attempting to leak confidential data by accessing it remotely. In response, insider threat detection approaches based on machine learning have been developed. However, existing machine learning methods used to detect insider threats do not take biases and variances into account, which leads to limited performance. In this paper, boosting-type ensemble learning algorithms are applied to verify the performance of malicious insider detection, conduct a close analysis, and even consider the imbalance in datasets to determine the final result. Through experiments, we show that using ensemble learning achieves similar or higher accuracy to other existing malicious insider detection approaches while considering bias-variance tradeoff. The experimental results show that ensemble learning using bagging and boosting methods reached an accuracy of over 98%, which improves malicious insider detection performance by 5.62% compared to the average accuracy of single learning models used.

Assessment of PVC-RUNs Arrhythmia by R-R Interval (R-R 간격을 이용한 PVC-RUNs 부정맥 검출)

  • Lee, Sun-Ju;Yoon, Tae-Ho;Kim, Kyeong-Seop;Lee, Jeong-Whan;Kim, Dong-Jun
    • Proceedings of the IEEK Conference
    • /
    • 2009.05a
    • /
    • pp.393-395
    • /
    • 2009
  • 심장의 활성 근육의 움직임에 의하여 발생되는 전기적 변화량을 나타내는 심전도는 부정맥 또는 허혈성 심장질환을 진단하는데 널리 활용되고 있다. 특히 심실빈맥(Ventricular Tachycardia) 또는 심실세동(Ventricular Fibrillation)과 같이 치명적인 심장리듬이 발생하기 이전에, 심실조기수축(Ventricular Premature Contraction)을 검출하여 생명을 위협할 수 있는 부정맥을 조기에 진단할 수 있는 연구들이 일부 진행되고 있다. 이에 따라서 본 연구에서는 심전도 신호의 R-R 간격 정보와 R-peak 정보의 진위성을 판단하여 PVC 부정맥 패턴뿐만 아니라 PVC 파형이 연속적으로 진행되는 PVC-RUNs을 효율적으로 검출할 수 있는 부정맥 진단 알고리즘을 제안하고자 하였다.

  • PDF

인터넷 뱅킹 보안을 위한 웹 공격의 탐지 및 분류

  • Park, Jae-Chul
    • Review of KIISC
    • /
    • v.18 no.5
    • /
    • pp.62-72
    • /
    • 2008
  • 인터넷 뱅킹은 인터넷을 통해 금융 업무를 처리하는 시스템으로, 시 공간적 제약이 없어 이용자가 크게 증가하고 있지만 인터넷을 기반으로 한 웹 공격으로 인하여 많은 위협을 받고 있다. 인터넷 뱅킹은 서비스를 제공하는 은행에 따라 사용자 인터페이스와 처리 방법이 매우 다양하므로, 인터넷 뱅킹 시스템을 목표로 한 웹 공격을 탐지하기 위해서는 해당 인터넷 뱅킹 서비스의 특징을 반영할 수 있는 고유의 패턴을 생성해야 한다. 본 논문에서는 서열 정렬 알고리즘을 이용하여 인터넷 뱅킹 이용에 대한 정상 및 비정상 패턴을 자동으로 생성하여 웹 공격을 탐지하고 분석하는 방법을 제안한다. 제시한 방법의 성능 평가를 위하여, 모의 인터넷 뱅킹 프로그램을 설치한 후 정상적인 이용과 웹 공격을 시도한 자료를 구분하여 수집하고 유사도를 측정하였다. 실험결과 제안된 기법이 오탐율이 낮고 탐지 성능 또한 뛰어남을 확인하였다. 그리고 전문가의 도움 없이 정상 패턴과 비정상 패턴을 생성할 수 있어 효율적으로 변형된 공격이나 새로운 공격을 차단하고 비정상 행위에 판단에 대한 근거를 제시할 수 있음을 보였다.

System for Computation of Inclination Risk of Building Based on Linear Regression Using Gyro Sensor (자이로 센서를 활용한 선형회귀 기반 건물 기울기 위험도 산출 시스템)

  • Kim, Da-Hyun;Hwang, Do-Kyung;Kim, Dong-Ju
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2021.07a
    • /
    • pp.61-64
    • /
    • 2021
  • 2016, 2017년 경주와 포항에서 발생한 규모 5.4 이상의 지진 당시 건물에 많은 피해가 속출함에 따라 지진 발생 시 건물 안전에 관한 관심이 증가하고 있다. 이러한 이유로 지진 등의 재난 상황 시 건물의 위험도를 신속하게 판단할 수 있는 방법론이 필요한 실정이다. 본 논문에서는 지진 등의 재난 상황 시 건물 안전에 위협이 될 수 있는 건물 기울기에 대한 위험도를 자이로 센서 데이터에 기반해 산출하는 시스템을 제안한다. 본 논문에서는건물 기울어짐 데이터를 확보함에 어려움이 있어 모의 거동 환경을 구축하여 데이터를 수집 및 분석하였다. 제안된 시스템은 자이로 센서로부터 수집된 실시간 기울기 데이터를 Mean Filter를 통해 데이터 평탄화 및 선형화를 수행 후 머신러닝 기법중 하나인 선형 회귀 알고리즘을 적용해 건물 기울기를 추정한다. 이후 국토교통부에서 고시한 건물 기울기 위험도 산출표를 바탕으로 측정된 기울기의 위험도를 산출한다. 해당 시스템은 실제 지진 등의 재난 발생 시 실시간 건물 기울기 위험 판단을 통해 신속한 재난 의사 결정에 도움이 될 것으로 기대된다.

  • PDF