• 제목/요약/키워드: 위험성예측모델

검색결과 305건 처리시간 0.025초

대형 소프트웨어 시스템의 결함경향성 예측을 위한 혼성 메트릭 모델 (Hybrid metrics model to predict fault-proneness of large software systems)

  • 홍의석
    • 컴퓨터교육학회논문지
    • /
    • 제8권5호
    • /
    • pp.129-137
    • /
    • 2005
  • 설계 명세를 이용하여 결함경향성이 많은 부분을 예측하는 위험도 예측 모델은 대형 통신 시스템 같이 결과 산물이 매우 큰 시스템의 개발비용을 낮추는데 중요한 역할을 하고 있다. 복잡도 메트릭에 기반한 많은 위험도 예측 모델들이 제안되었지만 그들 대부분은 모델 훈련을 위한 훈련 데이터 집합을 필요로 하고, 설계 개체들을 위험 그룹과 비위험 그룹으로 나누는 기능만 지닌 분류 모델들이었다. 본 논문에서는 두가지 형태의 검증된 혼성 메트릭들을 사용하는 새로운 예측 모델 HMM을 제안한다. HMM의 장점은 설계 개체의 위험도를 정량화함으로써 모델 훈련을 위한 훈련 데이터 집합이 필요 없다는 것과 개체 간에 위험도 비교가 가능하다는 것이다. HMM의 유용성을 보이기 위해 여러 내부 특성들과 예측 정확도 비교를 통해 잘 알려진 예측 모델인 역전파 신경망 모델(BPM)과 HMM을 비교하였다.

  • PDF

선박교통관제 강화 방안에 대한 제언 -공유된 정보를 통해 선박의 사고 개연성 예측 중심으로-

  • 김민영;안병일;이상춘;이상호
    • 한국항해항만학회:학술대회논문집
    • /
    • 한국항해항만학회 2016년도 춘계학술대회
    • /
    • pp.332-335
    • /
    • 2016
  • 2000년대 들어 정보기술의 발달로 정보공유와 수집을 쉽게 할 수 있게 되면서 많은 정보를 활용하여 미래의 사람들의 행동과 생각을 예측하기에 이른다. 특히, 정부는 보안과 위험관리 분야에 빅데이터 개념을 도입하여 미래에 대한 위험을 예측하고 효과적으로 관리할 수 있게 되었다. 선박도 사람과 마찬가지로 선박운항과 관련된 수많은 정보들을 만들어낸다. 이렇게 생성된 정보는 각 기관에 흩어져 관리되고 있으며, VTS센터에서 수집되는 정보들은 아직까지 체계적인 관리조차 이루어지지 않고 있다. 본 제언은 국내 VTS센터, 나아가 인근 국가의 VTS센터에서 생성되는 각종 정보들과 관련 기관에서 활용되는 정보들을 한 곳에서 통합하여 관리하는 시스템을 구축하고 이곳에서 공유 분석되는 정보를 통해 조금이나마 선박사고의 위험성을 감소시킬 수 있는 관제 방법에 대해서 생각해보았다. 이에 대한 방안 중 하나로 정보공유를 통한 선박 사고 개연성 예측 모델을 제시하고자 한다. 이후 연구를 통해, 본 제언에서 제시된 사고 개연성 예측 모델을 위한 위험유발 인자와 사고의 발생과의 상관을 통계적으로 해명할 수 있게 된다면 본 모델을 활용하여 보다 선제적이고, 효율적인 선박관제를 수행할 수 있을 것으로 생각된다.

  • PDF

훈련데이터 집합을 사용하지 않는 소프트웨어 품질예측 모델 (A Software Quality Prediction Model Without Training Data Set)

  • 홍의석
    • 정보처리학회논문지D
    • /
    • 제10D권4호
    • /
    • pp.689-696
    • /
    • 2003
  • 설계 개체의 결함경향성을 판별하는 위험도 예측 모델은 분석이나 설계 같은 소프트웨어 개발 초기 단계에서 시스템의 문제 부분들을 찾아 내는데 사용된다. 복잡도 메트릭에 기반한 많은 위험도 예측 모델들이 제안되었지만 그들 대부분은 모델 훈련을 위한 훈련데이터 집합을 필요로 하는 모델들이었다. 하지만 대부분의 개발집단은 훈련데이터 집합을 보유하고 있지 않기 때문에 이들 모델들은 대부분의 개발집단에서 사용될 수 없다는 커다란 문제점이 있었다. 이러한 문제점을 해결하기 위해 본 논문에서는 Kohonen SOM 신경망을 이용하여 훈련데이터 집합을 사용하지 않는 새로운 예측 모델 KSM을 제안한다. 여러 내부 특성들과 모델 사용의 용이성 그리고 모의실험을 통한 예측 정확도 비교를 통해 KSM을 잘 알려진 예측 모델인 역전파 신경망 모델(BPM)과 비교하였으며 그 결과 KSM의 성능이 BPM에 근접하다는 것을 보였다.

예측적 공간 데이터 마이닝을 이용한 산불위험지역 예측 (Prediction of Forest Fire Hazardous Area Using Predictive Spatial Data Mining)

  • Han, Jong-Gyu;Yeon, Yeon-Kwang;Chi, Kwang-Hoon;Ryu, Keun-Ho
    • 정보처리학회논문지D
    • /
    • 제9D권6호
    • /
    • pp.1119-1126
    • /
    • 2002
  • 이 논문에서는 공간적 통계기법에 근거한 예측적 공간 데이터 마이닝 방법을 제안하고, 산불위험지역을 예측하는데 적용하였다. 제안된 방법은 조건부 확률과 우도비를 이용한 방법으로 과거 산불발생지역에 대해 산불과 관련된 공간데이터 집합들 사이의 정량적 관계에 의존적인 예측 모델이다. 두 가지 방법을 이용하여 산불위험지역 예측도를 만들고, 각 모델의 예측력을 평가하기 위해 산불위험율(FHR : Forest Fire Hazard Rate)과 예측률곡선(PRC : Prediction Rate Curve)을 이용하였다. 제안된 두 가지 예측모델의 예측력 비교분석 결과, 우도비 방법이 조건부 확률 방법보다 더 우수한 것으로 나타났다. 이 논문에서 제안된 산불위험지역 예측모델을 이용하여 작성된 산불위험지역 예측도는 산불예방과 산불감시장비 및 인력의 효율적인, 배치 등 산불관리의 효율성을 높이는데 많은 도움을 줄 것으로 기대된다.

퍼지 분류를 이용한 초기 위험도 예측 모델 (Early Criticality Prediction Model Using Fuzzy Classification)

  • 홍의석;권용길
    • 한국정보처리학회논문지
    • /
    • 제7권5호
    • /
    • pp.1401-1408
    • /
    • 2000
  • 소프트웨어 개발 초기 단계의 문제점이 개발 후반부 산물의 품질에 심각한 영향을미치기 때문에 설계 명세를 이용하여 위험 부분을 예측하는위험도 예측 모델은 전체 시스템 개발비용을 낮추는 데 중요한 역할을 하고 있으며, 이러한 예측 모델은 결과 산물이 매우 크고 실행 정확성이 요구되는통신 소프트웨어 같은 실시간 시스템 설계에 더욱 필요하다. 판별분석, 인공신경망, 분류트리 등의 기법들을 이용한 모델들이 제안되었으나 이들은 결과에 대한 원인 분석의 어려움, 낮은 확장성 등의 문제점들을 지니고 있었다. 본 논문에서는 유전자 알고리즘에 의해 구축된 퍼지 규칙 베이스를 이용한 위험도 예측 모델을 제안한다. 제안 모델은 예측 결과에 대한 원인 분석이 용이하고 높은 확정성과 적용성을 지니고 규칙수에 대한 제안이 없다. 이러한 내부특성들 비교의 모의 실을 통한 예측 정확도 비교를 통해 제안 모델이 타 모델들보다 우수함을 보였다.

  • PDF

밀도 기반 공간 군집체계를 반영한 해양사고 위험 예측 모델 개발에 관한 연구

  • 양지민;최충정;백연지;임광현;노유나
    • 한국항해항만학회:학술대회논문집
    • /
    • 한국항해항만학회 2023년도 춘계학술대회
    • /
    • pp.146-147
    • /
    • 2023
  • 해양사고는 도로교통과 달리 지속적으로 증가하고 있으며, 인명피해가 주로 발생하는 주요 사고의 치사율은 도로교통의 11.7배 이상이다. 해양사고는 외부 환경에 따라 사고 위치가 변하고 즉각적인 조치가 어려워 타 교통에 비해 대형 사고로 이어질 가능성이 매우 크다. 그러나 여전히 사고가 발생하고 난 후 대응하는 등 사후적 관리 단계에 무르고 있어 사고의 주요 요인을 사전에 식별·관리하는 선제적 관리단계로의 전환 필요성이 대두되고 있다. 따라서 본 연구에서는 해양사고 발생 지점 밀도 기반의 가변 공간 군집체계를 반영한 해양사고 예측모델을 개발하였다. 반복적인 공간 가산분석을 통해 밀도가 높을수록 작은 규모의 격자 체계를 가질 수 있도록 상세한 공간 군집체계를 구성하였으며, 단순 사고 위험도 예측뿐만 아닌 사고 인과관계를 설명할 수 있는 BN(Bayesian Network) 기반의 모형을 사용하여 해양사고 위험예측 모델을 개발하였다. 또한, Cost-of-Omission을 통해 해양사고 예측확률의 변화와 각 변수들의 영향력을 확인하였으며, 월별 해양사고예측 결과를 GIS를 활용하여 2D/3D 기반으로 시각화하였다.

  • PDF

GAM: 대형 통신 시스템을 위한 위험도 예측 모델 (GAM: A Criticality Prediction Model for Large Telecommunication Systems)

  • 홍의석
    • 컴퓨터교육학회논문지
    • /
    • 제6권2호
    • /
    • pp.33-40
    • /
    • 2003
  • 소프트웨어 개발 초기 단계의 문제점이 개발 후반부 산물의 품질에 심각한 영향을 미치기 때문에 설계 명세를 이용하여 결함경향성이 많은 부분을 예측하는 위험도 예측 모델은 전체 시스템 개발비용을 낮추는 데 중요한 역할을 하고 있으며, 이러한 예측 모델은 결과 산물이 매우 크고 실행 정확성이 요구되는 통신 소프트웨어 같은 실시간 시스템 설계에 더욱 필요하다. 판별분석, 인공신경망, 분류트리 등의 기법들을 이용한 모델들이 제안되었으나 이들은 결과에 대한 원인 분석의 어려움, 낮은 확장성 등의 문제점들을 지니고 있었다. 본 논문에서는 유전자 알고리즘을 이용한 새로운 모델인 GAM을 제안한다. GAM은 위험도 함수를 만들어 내므로 기존의 분류 모델들과는 다르게 설계 개체의 위험도 비교에도 사용가능하다. 여러 내부 특성들과 예측 정확도 비교를 통해 GAM을 잘 알려진 예측 모델인 역전파 신경망 모델(BPM)과 비교하였다.

  • PDF

상수관로 위험도 예측을 위한 평가 지표 개발 (Development of Risk Prediction Index in Water Distribution System)

  • 최예지;정한나;장동우
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2023년도 학술발표회
    • /
    • pp.402-402
    • /
    • 2023
  • 상수관망은 충분한 양질의 수돗물을 공급하기 위한 사회기반 시설물이다. 상수관로의 노후화, 누수 등은 수도 사고 발생의 가능성을 증가시키고, 수돗물 안전성에 대한 신뢰도를 감소시킨다. 수돗물 공급 전 과정을 인공지능(AI), 정보통신기술(ICT)과 결합한 지능형 상수도관 예측 및 관리 시스템을 구축하여, 상수도 수질 사고를 조기에 감지하고 사전에 취약지점을 예측할 필요가 있다. 이를 위해서는 상수관로의 위험도를 평가하기 위한 체계적인 데이터와 기준이 필요하다. 본 연구에서는 상수관로의 위험도 예측모델을 개발하기 위해 상수관로 위험도와 관련된 평가 인자를 선정하고 분류하였으며, 각 인자의 명확한 기준을 제시하였다. 국내·외 상수도 위험도 평가 항목에 대한 자료를 비교 및 분석하였고, 전문가 자문을 통해 인자를 정립하여 상수관로 위험도 평가 지표를 개발하였다. 개발된 평가 지표의 현장 적용성과 실효성 검증을 위해 정량적인 데이터 확보가 가능하고 상태를 평가할 수 있는 대상 지역을 선정하였다. 문헌 자료의 평가항목들과 전문가 의견을 바탕으로 상수관로 위험도 평가 인자를 31개의 직접 인자와 5개의 간접 인자로 구분하였고, 인자별 평가 기준을 제시하였다. 직접 인자는 노후화 정도를 파악할 수 있는 노후도 평가 항목, 지역 특성을 반영한 토양 부식성 항목, 실시간으로 측정하여 결과를 제공하는 실시간 계측 항목, 직접적인 수질 결과를 제공하는 정수장 수질 항목, 상수관로의 건전성을 평가하는 자산관리 항목으로 분류하였다. 추후, 위험도 평가 운용을 위한 알고리즘을 개발하면 상수도 사고 위험에 대한 예방 및 대응 전략을 수립할 수 있을 것으로 기대된다.

  • PDF

신경망 모델과 확률 모델의 풍수해 예측성능 비교 (Performance Comparison between Neural Network Model and Statistical Model for Prediction of Damage Cost from Storm and Flood)

  • 최선화
    • 정보처리학회논문지B
    • /
    • 제18B권5호
    • /
    • pp.271-278
    • /
    • 2011
  • 최근 급증하는 기상이변 및 기후온난화 현상은 풍수로 인한 피해를 더욱 가속시키고 있어 풍수해 발생가능성을 미리 예측하여 선제적으로 대응할 방안 마련이 필요하다. 재난 재해의 위험성 분석은 주로 확률 통계기법에 기반한 수식모델 연구가 주류를 이루고 있고 소방방재청 국립방재연구소에서 구축한 태풍위원회 재해정보시스템(TCDIS: Typhoon Committee Disaster Information System) 또한 지역별 풍수해 위험성 분석에 확률모델을 활용하고 있다. 본 논문에서는 경험적 패턴인식에 탁월한 성능을 가진 신경망 알고리즘을 활용하여 개발한 풍수해 예측모델을 소개하고 이 모델과 TCDIS의 KDF 확률밀도함수를 이용한 풍수해 예측모델의 성능 비교 결과를 제시하여 기존 TCDIS의 위험성 분석기능에 신경망 모델을 적용함으로써 시스템의 강건성과 예측 정확도 향상이 가능함을 보이고자 한다.

서울시 도시침수 예측시스템 개발 (Development of Urban Inundation Forecasting System in Seoul)

  • 심재범;김호성;김광훈;이병주
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2020년도 학술발표회
    • /
    • pp.341-341
    • /
    • 2020
  • 서울시는 '10년, '11년, '18년의 기록적인 호우로 인해 막대한 재산피해를 기록하였다. 이로 인해 서울시는 수재해 최소화 대책의 필요성을 인지하여 방재시설물 확충 등의 구조적 대책과 함께 침수지역 예측, 호우 영향 예보와 관련된 비구조적 대책 수립을 위해 노력하고 있다. 그 일환으로 '18년에 『서울시 강한 비구름 유입경로 및 침수위험도 예측 용역』을 수행하였으며 이를 통해 레이더 기반의 비구름 이동경로 추정 기술, 침수시나리오 기반의 침수위험지역 추정기술 등을 적용한 서울시 도시침수 예측시스템을 개발하였다. 그러나 침수피해에 선제적으로 대응하기 위해서는 실시간으로 예측강우정보를 생산하고 이를 통해 침수위험지역을 추정하는 기술이 필요하다. 이에 본 연구를 통해 예측강우정보 생산 기술 적용, 예측강우정보를 이용한 실시간 침수위험지역 추정 기술 개발을 수행하여 서울시 도시침수 예측시스템을 고도화하였다. 예측강우정보의 경우 현재 기상청에서 광역 단위 호우특보 및 읍면동 단위 동네예보를 통해 제공되고 있지만, 풍수해 업무에 적용하기에는 제한적이며, 실시간 침수위험지역 추정의 경우 침수해석모델의 모의시간, 라이센스 등의 문제로 인해 한계를 보이고 있는 실정이다. 따라서 본 연구에서는 레이더 실황강우정보를 활용한 이류모델 기반의 예측강우정보 생산 기술을 적용하여 풍수해 업무 적용이 용이하도록 하였으며, 예측강우정보를 이용한 최적 침수시나리오 추정 기술 개발을 통해 실시간 침수위험지역 추정이 가능하도록 하였다. 서울시 도시침수 예측시스템은 25개 자치구를 대상으로 강우량, 호우이동경로, 침수 정보를 제공하고 있다. 강우정보는 기상청 및 SK-TechX 기반의 10분 및 1시간 단위 AWS 관측정보, 이류모델 기반 10분 단위 레이더 예측정보, 국지예보모델 기반 1시간 단위 LDAPS 예측정보를 제공하며. 호우이동경로는 레이더 실황강우정보와 LDAPS 바람장을 이용하여 서울시 및 수도권 지역의 10분 단위 1시간 예측경로를 제공한다. 침수정보는 실시간으로 레이더 예측강우정보를 이용하여 최적의 침수시나리오를 추정하여 격자 단위 상세 침수정보와 시군구 단위 침수위험지도를 제공한다. 본 시스템을 통해 실시간 침수위험지역 확인이 가능해짐에 따라 서울시의 효율적인 풍수해 업무 지원이 가능할 것으로 판단된다.

  • PDF