• Title/Summary/Keyword: 위치 측정

Search Result 6,817, Processing Time 0.037 seconds

Positioning Methods of Location-Based Service (LBS 시스템의 위치 측정 기술)

  • Choi, Chang-Mook
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2014.05a
    • /
    • pp.710-711
    • /
    • 2014
  • LBS(Location-Based Service)는 위치 정보에 기반을 둔 서비스로, 이동통신망으로 사람이나 사물의 위치를 정확하게 파악하고 이를 활용하는 응용 시스템 및 서비스를 가리킨다. 또한 높은 정확도 를 이용하여 다양한 분야에 적용할 수 있어 상업적 잠재력이 뛰어나다. 본 논문에서는 이러한 위치 기반서비스의 위치측정 기술의 여러 방법들을 알라보고 현재 사용되고 있는 스마트폰의 위치 측정결과를 토대로 문제점과 나아갈 방향을 제시하였다.

  • PDF

A Measurement and Analysis for the Discharge Calibration of the Skew Bridge (사교에서의 유량측정치보정을 위한 실측 및 분석)

  • Jeon, Byung-Hark;Lee, Jae-Hyug;Kim, Jeong-Nam;Kim, Sung-Hoon
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2012.05a
    • /
    • pp.684-684
    • /
    • 2012
  • 하천유량측정은 불가피하게 사교형태의 교량에서 측정을 해야하는 경우가 적지 않다. 이러한 교량에서의 유량측정은 수위-단면적이 과대산정되어 유량 역시 크게 산정되므로 이에 대한 보정을 필요로 한다. 본 연구에서는 왕숙천에 위치한 퇴계원 수위관측소 하류 400m 위치에서의 도섭법을 통한 횡단면 측선각도 변화에 따른 유량차의 비교와 오산천에 위치한 약 $45^{\circ}$ 사교(탑동대교)의 탑동 수위관측소 위치의 교량법을 이용한 유량측정 성과, 한탄강에 위치한 약 $15^{\circ}$ 사교(한탄대교)의 전곡 수위관측소 상류 1km에 위치한 한탄대교에서의 교량법 측정 성과에 따른 유량차를 비교 분석하였다. 한강유역 왕숙천, 오산천, 한탄강에 위치한 퇴계원 지점, 탑동 지점, 전곡 지점에서 실시간 수위에 따른 유속을 측정하였으며, 퇴계원 지점에서는 횡단면에 직각인 측선을 기준 값으로 제시하고, 횡단방향각의 정도를 $10^{\circ}$, $30^{\circ}$, $50^{\circ}$으로 늘려 산정을 하였고, 탑동과 전곡 지점에서는 사교에서의 횡단각을 측정하여 사교의 각을 산정한 후 보정 전 후의 유량 값을 비교 분석하였다. 측정에 사용된 기기는 Price AA 유속계이고, 측정방법은 도섭법과 교량법을 적용하였다. 그 결과 직각인 측선에서 측정한 유량보다 사교형태에서 측정한 유량이 크게 산정되었다. 각 지점의 보정전 후 유량비는 탑동 지점 약 41.42%, 전곡 지점 약 3.53%로 산정되어 $15^{\circ}$ 사교의 전곡 지점에 비해 $45^{\circ}$ 사교의 탑동 지점의 보정전 후 유량차이가 크게 나타남에 따라 각이 클수록 유량 역시 과대하게 산정됨을 알 수 있었다. 따라서 유량측정을 실시할 경우 유량의 흐름방향을 기준으로 직각의 유량측정을 실시하여 유량을 산정하되 부득이한 경우로 사교에서의 측정이 이루어졌을시 흐름 방향을 기준으로 각도를 측정하여 크게 나타나는 수위-단면적에 각보정하여 유량을 산정함이 오차를 줄일 수 있으며, 신뢰성 있는 유량자료 생산의 방법이라 할 수 있겠다.

  • PDF

Location-Aware System Design using the Bluetooth Protocol Stack (BlueZ) of Linux in Ubiquitous computing application (리눅스 블루투스 프로토콜 스택(BlueZ)을 이용한 위치 인식 시스템 설계)

  • Lee, Jae-Woo;Kim, Jin-Hyung;Cho, We-Duke
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2007.10b
    • /
    • pp.285-290
    • /
    • 2007
  • 본 논문에서 구현하고자 하는 유비쿼터스 컴퓨팅 응용에 필요한 위치 인식 시스템의 주 요소는 블루투스 프로토콜 스택(BlueZ)에서 제공하는 RSSI(Received Signal Strength Indicator) 값을 측정하는 블루투스 AP, 측정된 RSSI 값을 위치 인식 서버에 전달하기 위한 무선 AP 공유기 그리고, 받은 데이터로 위치 값을 측정하는 위치 인식 서버 및 Context Broker(고 수준의 상황 정보를 추론하는 서버 역할)로 이루어져있다. 전체적인 동작 시스템은 위치 값을 측정하고자 하는 이동 매제(마스터)를 중심으로 최대 여덟 개까지 네트워크가 가능한 블루투스 AP(슬레이브)장치로 구성된 피코넷(Piconet) 영역에서 삼각측량 필요에 적절한 세 개의 블루투스 AP를 RSSI값을 이용하여 분류 한 후 이동 매체의 위치를 측정한다. 그 결과로 나온 데이터는 피코넷 영역에서 가장 가까운 무선 AP 공유기를 거쳐서 위치 값을 측정하는 위치 인식 서버에 전달한 후, 그 결과 값으로 Context Broker에서 상황 정보를 추론해서 Community Manager에서 유비쿼터스 컴퓨팅 응용에 맞게 서비스를 구현한다. 또한, 위와 같은 시스템 내부 구조 된 데이터처리는 리눅스 운영체제 내에서 디바이스 드라이버와 사용자 프로그램으로 구현된다.

  • PDF

A Study on Position Measurement of Drone based on Inertial Measurement Unit in Indoor Environment (실내 환경에서 드론의 관성항법장치 기반 위치 측정 연구)

  • Kim, Deok-Yeop;Lee, Sunghee;Lee, Woo-Jin
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2017.04a
    • /
    • pp.645-648
    • /
    • 2017
  • 실외 환경에서는 일반적으로 드론의 위치 측정 또는 위치 제어를 위해서 위성항법장치를 사용한다. 위성항법장치는 실내 환경에서 신호 수신이 어렵기 때문에 실내에서의 위치 측정과 항법을 수행하기 위해서 많은 연구가 이루어진다. 기존의 연구들은 드론에 추가적인 센서를 요구하거나 사전 실내 환경 설정을 가정한다. 그러나 추가적인 장치나 환경 설정 없이 드론의 관성항법장치만으로도 위치 측정이 가능하다. 관성항법장치는 가속도를 적분하여 이동한 거리를 파악하기 때문에 시간이 지날수록 오차가 누적되는 문제점이 있으며 비행 중 기체 진동으로 인한 측정 오차로 정확한 이동거리를 산출해내는 것이 어렵다. 따라서 본 논문에서는 이러한 문제들을 드론의 특성을 반영하여 관성항법장치로부터 발생한 오차를 줄여 보다 정확한 드론의 실내 위치측정 방법을 제안한다.

The Efficient Computation of Node Position on Mobile Sensor Network (모바일 센서 네트워크에서 효율적인 노드 위치 결정)

  • Park, Na-Yeon;Son, Cheol-Su;Kim, Won-Jung
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.5 no.4
    • /
    • pp.391-398
    • /
    • 2010
  • Because mobile sensor network is different with the existing wireless sensor network with fixed nodes, it is more difficult to implement a positioning algorithm in mobile sensor network than in mobile sensor network. In case of fast moving node, a positioning algorithm may be not completed in a given time. In this paper we present the positioning algorithm that improves performance and can complete a computation in time on mobile sensor network.

Method of Localized Measurement using Transmit Output Control in Mobile Sensor Network (이동 센서 네트워크에서 송신출력 제어를 이용한 위치측정 방안)

  • Kim, Hoon;John, Young-Jun;Shin, Seoung-Ho
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2007.06d
    • /
    • pp.296-300
    • /
    • 2007
  • 유비쿼터스 환경의 센서 노드들은 데이터 전달을 위해 무선 통신을 수행한다. 또한 노드들의 위치정보를 활용하면 통신 경로선택에 큰 이점을 가지게 된다. 그래서 이동성을 갖춘 센서 노드 위치를 정확히 측정하기 위해 별도의 GPS, 초음파 센서 등을 부착한다. 그러나 센서 네트워크는 제한된 전력 사용과 낮은 비용 유지가 요구된다. 또한 기존의 애드혹 기반의 위치측정과 전체 망의 생존성을 고려해야 하는 센서 네트워크간의 상황이 적용 모델의 변수로서 작용한다. 본 논문에서는 컴퓨팅 자원이 부족한 센서 네트워크에서 다음의 조건을 만족하는 위치측정 방법을 제안한다. 첫째 빈번하게 이동하는 센서 노드의 이동성을 고려한다. 둘째 위치측정을 위한 별도의 장비를 추가하지 않는다. 셋째 노드의 송신출력 분석에 기반하여 상대적인 위치를 검출한다.

  • PDF

Improved Trilateration Method on USN for reducing the Error of a Moving Node Position Measurement (무선센서네트워크에서 삼변측량법 기반 이동노드 위치 오차를 줄이는 탐색기법)

  • Mun, Hyung-Jin;Jeong, Hee-Young;Han, Kun-Hee
    • Journal of Digital Convergence
    • /
    • v.14 no.5
    • /
    • pp.301-307
    • /
    • 2016
  • The location measurement technique of moving worker in dangerous areas, is necessary for safety in the mines, basements, warehouses, etc. There are various measurement techniques about moving node of position in a restricted environment. Trigonometric Method, one of measurement techniques, is commonly used because of its easiness. However, errors occur frequently when measuring distance and position due to radio interference and physical disability with measuring instruments. This paper proposed a method which is more accurate and shows reduced margin of error than existing trigonometric method by recalculating distance between Anchor and moving node with various measuring instruments. By adding Anchor when calculating distance and position of moving node's estimated point, suggested technique obtains at least 41% efficiency compared to existing method.

Cooperative Positioning System Using Density of Nodes (노드의 밀도를 이용한 상호 협력 위치 측정 시스템)

  • Son, Cheol-Su;Yoo, Nem-Hyun;Kim, Wong-Jung
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.11 no.1
    • /
    • pp.198-205
    • /
    • 2007
  • In ubiquitous environment a user can be provided with context-aware services based on his or her current location, time, and atmosphere. LBS(Location-Based Services) play an important role for ubiquitous context-aware computing. Because deployment and maintenance of this specialized equipment is costly, many studies have been conducted on positioning using only wireless equipment under a wireless LAN infrastructure. Because a CPS(Cooperative Positioning System) that uses the RSSI (Received Signal Strength Indicator) between mobile equipments is more accurate than beacon based positioning system, it requires great concentration in its applications. This study investigates the relationship between nodes by analyzing a WiPS (Wireless LAN indoor Positioning System), a similar type of CPS, and proposes a improved WiCOPS-d(Wireless Cooperative Positioning System using node density) to increase performance by determining the convergence adjustment factor based on node density.

Location Tracking System for Container Trailer Using Ubiquitous Sensor Networks (USN를 이용한 컨테이너 트레일러 위치추적 시스템)

  • Park, Jong-Hyun;Choo, Young-Yeol
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.11 no.3
    • /
    • pp.627-633
    • /
    • 2007
  • This paper describes position tracking system of a container trailer approaching to a gantry crane for loading or unloading a container into or from a ship, respectively. Proposed position tracking system informs the trailer driver of right position to stop the car under a gantry crane. To measure the location of a trailer, we used Cricket Mote modules which adopted RF and ultrasound technology. We present an elaborate method to improve position errors occurring at sensing and calculate three dimensional position by triangulation along with how to reduce location tracking interval for real-time monitoring. The location information was transmitted to a Personal Digital Assistant (PDA) periodically through Bluetooth communication for guidance of the trailer driver. In indoor and outdoor tests, position errors were less than 3 cm and location tracking interval was 0.5 second on average.

A Positioning Scheme Using Sensing Range Control in Wireless Sensor Networks (무선 센서 네트워크 환경에서 센싱 반경 조절을 이용한 위치 측정 기법)

  • Park, Hyuk;Hwang, Dongkyo;Park, Junho;Seong, Dong-Ook;Yoo, Jaesoo
    • The Journal of the Korea Contents Association
    • /
    • v.13 no.2
    • /
    • pp.52-61
    • /
    • 2013
  • In wireless sensor networks, the geographical positioning scheme is one of core technologies for sensor applications such as disaster monitoring and environment monitoring. For this reason, studies on range-free positioning schemes have been actively progressing. The density probability scheme based on central limit theorem and normal distribution was proposed to improve the location accuracy in non-uniform sensor network environments. The density probability scheme measures the final positions of unknown nodes by estimating distance through the sensor node communication. However, it has a problem that all of the neighboring nodes have the same 1-hop distance. In this paper, we propose an efficient sensor positioning scheme that overcomes this problem. The proposed scheme performs the second positioning step through the sensing range control after estimating the 1-hop distance of each node in order to minimize the estimation error. Our experimental results show that our proposed scheme improves the accuracy of sensor positioning by about 9% over the density probability scheme and by about 48% over the DV-HOP scheme.