• Title/Summary/Keyword: 위치정합

Search Result 516, Processing Time 0.025 seconds

Automatic Extraction of Stable Visual Landmarks for a Mobile Robot under Uncertainty (이동로봇의 불확실성을 고려한 안정한 시각 랜드마크의 자동 추출)

  • Moon, In-Hyuk
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.7 no.9
    • /
    • pp.758-765
    • /
    • 2001
  • This paper proposes a method to automatically extract stable visual landmarks from sensory data. Given a 2D occupancy map, a mobile robot first extracts vertical line features which are distinct and on vertical planar surfaces, because they are expected to be observed reliably from various viewpoints. Since the feature information such as position and length includes uncertainty due to errors of vision and motion, the robot then reduces the uncertainty by matching the planar surface containing the features to the map. As a result, the robot obtains modeled stable visual landmarks from extracted features. This extraction process is performed on-line to adapt to an actual changes of lighting and scene depending on the robot’s view. Experimental results in various real scenes show the validity of the proposed method.

  • PDF

Integrated Position Estimation Using the Aerial Image Sequence (항공영상을 이용한 통합된 위치 추정)

  • Sim, Dong-Gyu;Park, Rae-Hong;Kim, Rin-Chul;Lee, Sang-Uk
    • Journal of the Korean Institute of Telematics and Electronics S
    • /
    • v.36S no.12
    • /
    • pp.76-84
    • /
    • 1999
  • This paper presents an integrated method for aircraft position estimation using sequential aerial images. The proposed integrated system for position estimation is composed of two parts: relative position estimation and absolute position estimation. Relative position estimation recursively computes the current position of an aircraft by accumulating relative displacement estimates extracted from two successive aerial images. Simple accumulation of parameter values decreases reliability of the extracted parameter estimates as an aircraft goes on navigating, resulting in large position error. Therefore absolute position estimation is required to compensate for the position error generated in relative position estimation. Absolute position estimation algorithms by image matching or digital elevation model (DEM) matching are presented. In image matching, a robust oriented Hausdorff measure (ROHM) is employed whereas in DEM matching an algorithm using multiple image pairs is used. Computer simulation with four real aerial image sequences shows the effectiveness of the proposed integrated position estimation algorithm.

  • PDF

Absolute Position Estimation Algorithm Using Sequential Aerial Images (연속 항공영상을 이용한 절대위치 추정 알고리듬)

  • 심동규;박래홍
    • Journal of the Korean Institute of Telematics and Electronics S
    • /
    • v.36S no.3
    • /
    • pp.68-75
    • /
    • 1999
  • 본 논문은 항공영상으로부터 REM( recovered elevation map)를 추출하여 DEM (digital elevation model)과 정합함으로써 비행체의 위치를 추정하는 기법을 제안하였다. 제안한 알고리듬은 연속항공영상을 이용함으로써 보다 넓은 지역에 대한 REM (recovered elevation map)복원이 가능하여 정합확률이 높아진다. 또한 강건한 거리 척도를 사용함으로써 몇 개의 점에서의 매우 큰 오차에 영향을 받지 않은 알고리듬을 제안하였다. 본 논문에선 몇 개의 항공영상을 가지고 컴퓨터 시뮬레이션을 통하여 제안한 알고리듬의 효용성을 보였다.

  • PDF

Image Registration by Optimization of Mutual Information (상호정보 최적화를 통한 영상정합)

  • Hong, Hel-Len;Kim, Myoung-Hee
    • The KIPS Transactions:PartB
    • /
    • v.8B no.2
    • /
    • pp.155-163
    • /
    • 2001
  • In this paper, we propose an image registration method by optimization of mutual information to provide a significant infonnation from multimodality images. The method applies mutual infonnation to measure the statistical dependency'r information redundancy between the image intensities of corresponding pixels in both images, which is assumed to be maximal if the images are geometrically aligned. We show the registration results optimizing mutual information between brain MR image and brain CT image and the comparison results with additive gaussian noise. Since our method uses the native image rather than prior segmentation or feature extraction, no user interaction is required and the accuracy of registration is improved. In addition, it shows the robustness against the noise.

  • PDF

Image Matching by First Eigenvector and Histogram Analysis (일차 고유벡터와 히스토그램 분석에 의한 영상 정합)

  • Im, Mun-Cheol;Hwang, Seon-Chul;Kim, Woo-Saeng
    • Journal of KIISE:Software and Applications
    • /
    • v.27 no.10
    • /
    • pp.1054-1061
    • /
    • 2000
  • 영상 정합은 물리적으로 유사한 영상 내의 영역들을 기하학적으로 일치시키는 처리이며 지형 정보, 영상검색, 원격탐사, 의료영상 등의 많은 영상처리 응용에서 사용된다. 영상 정합에 관한 연구는 주로 회전, 크기, 위치 등의 인자 추출에 소요되는 시간과 정확성에 중점을 두어 왔다. 본 연구에서는 영상의 특징 점들에 대한 일차 고유벡터의 방향 분포를 히스토그램으로 표현하고 이를 비교 분석함으로써 정합하는 방법을 제안한다. 일차 고유벡터를 이용함으로써 특징 묘사의 단순성을 제공하고. 히스토그램을 이용하여 정합 인자를 미리 추정함으로써 정합 인자 추출 시 목적함수의 연산에 소요되는 비용을 현저하게 줄였다. 본 연구의 결과를 평가하기 위해 제안한 방식을 일반 영상과 ICG(IndoCyanine Green)망막 영상에 적용한 결과를 보여주고 목적함수의 연산횟수와 시간 복잡도를 기존의 방법들과 비교하였다.

  • PDF

Histogram Block-based Similarity Image Map and Image Stitching Algorithm (히스토그램 블록 기반 유사 영상 맵 생성 및 영상 합성 알고리즘)

  • Yu, Jaeseong;Lee, Eunbyeol;Kim, Harin;Lee, Jeman;Lee, Euisang;Kim, Kyuheon
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2016.06a
    • /
    • pp.40-43
    • /
    • 2016
  • 본 논문에서는 다수의 영상을 빠르고 오류 없이 정합하기 위하여 정합과정의 전 처리로써 유사도 맵 생성 알고리즘을 제안한다. 본 논문에서는 블록화한 히스토그램을 통하여 영상간의 관계를 판별하게 된다. 두 영상의 블록 히스토그램을 비교하여 영상 간의 유사성과 위치관계를 8 방향으로 판별하고 이를 이용하여 유사도 맵에 영상들을 정렬하게 된다. 유사도 맵의 생성으로 정합 알고리즘을 적용해야 하는 경우의 수가 줄어들어 복잡도는 낮아지게 되어 이후 정합과정에서 속도의 이득을 얻을 수 있다. 또한 정합 방법으로 변형이 적은 영상을 정합하는데 탁월한 성능과 속도를 보이는 히스토그램을 이용한 방법을 제안한다. 제안 알고리즘을 이용하여 실험한 결과 기존의 다중 영상 스티칭 알고리즘에 비하여 매우 빠른 속도를 확인 할 수 있고 결과 영상 또한 오류가 적은 것을 확인 할 수 있다.

  • PDF

Fast Motion Estimation Algorithm using Predictive Motion Vector and Block Matching Error Characteristics (예측 움직임 벡터와 블록 정합 오류 특성을 이용한 고속 움직임 추정 알고리즘)

  • 정봉수;전병우
    • Proceedings of the IEEK Conference
    • /
    • 2003.11a
    • /
    • pp.145-148
    • /
    • 2003
  • 움직임 벡터의 상관도, 움직임 벡터의 분포특성, 블록 정합 오류의 특성은 탐색 패턴과 탐색 방법을 결정하는 중요한 요소이다. 일반적으로 움직임 벡터는 주로 탐색영역의 가운데를 중심으로 수평 흑은 수직축에 주로 분포한다. 또한 탐색 영역 내의 정합 오류 값의 분포를 보면 움직임 벡터의 분포와 비슷한 형태로 정합 오류의 값들이 수평 혹은 수직 방향으로 최소 정합 오류 값의 위치로 단조 감소해 나간다. 본 논문에서는 이러한 블록 정합 오류의 특성을 이용한 새로운 탐색 방법을 제안하며 주변 블록의 움직임 벡터의 상관도를 이용하여 초기 탐색 지점을 선택하는 고속 움직임 추정 알고리즘을 제안한다. 또한 모의실험을 통하여 기존의 여러 움직임 추정 알고리즘과 비교하여 PSNR 의 감소는 거의 없으면서 매크로블록당 평균 탐색포인트와 수행 시간의 향상을 얻을 수 있음을 확인한다.

  • PDF

An Active Block Matching Algorithm by Adapts Search Area and Weights of Features Dynamically (탐색 영역과 특징의 가중치를 동적으로 조절하는 활동적 블록 정합 알고리듬)

  • Jang, Seok-Woo;Choe, Hyeong-Il
    • Journal of KIISE:Software and Applications
    • /
    • v.27 no.12
    • /
    • pp.1193-1201
    • /
    • 2000
  • 본 논문에서는 탐색 영역과 특징의 가중치를 동적으로 조절하여 블록 단위의 움직임 벡터를 추출하는 활동적 블록 정합 알고리듬을 제안한다. 본 논문에서 제안하는 알고리듬은 탐색 영역의 중심 위치를 결정하기 위해 시간에 따른 블록의 동작 변화는 작다고 가정한다. 그리고 탐색 영역의 크기는 공간적으로 인접한 블록들의 신뢰도에 따라 조절된다. 또한 본 논문에서 제안하는 알고리듬은 다중 특징을 사용하는 블록 정합 알고리듬으로 블록 정합 시 특징의 기여 정도를 나타내는 가중치를 블록 안에서 각 특징이 가지는 구분력에 따라 자동으로 설정하는 정합 유사 함수를 사용한다. 실험 결과는 본 논문에서 제안한 블록 정합 알고리듬이 기존의 알고리듬 보다 정확하게 움직임 벡터를 추출함을 보여준다.

  • PDF

Multi-view Range Image Registration using CUDA (CUDA를 이용한 다시점 거리영상 정합)

  • Choi, Sung-In;Park, Soon-Yong;Kim, Jun;Park, Yong-Woon
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2008.06c
    • /
    • pp.533-538
    • /
    • 2008
  • 본 논문에서는 GPU의 성능을 이용하여 다시점 거리 영상을 실시간으로 정합하는 3차원 온라인 시스템을 제안한다. 제안한 시스템은 거리영상의 정교한 정합을 위해 IPP 알고리즘을 사용하였으며, 최신 GPU 프로그래밍 기법으로 각광받고 있는 CUDA를 이용하여 정합 알고리즘의 연산비용이 큰 부분에 해당하는 투영과 변환의 반복 부분을 수행하였다. 스테레오 기반 휴대용 거리센서에서 $320{\times}240$ 거리영상을 획득하여 정합 알고리즘을 수행한 결과, 초당 5장의 거리영상을 정합할 수 있었다. 제안한 온라인 시스템은 실시간 3차원 모델 복원 기술이 필요한 로봇위치 인식, 주행용 비전 기술, 문화재 원형 복원 등의 분야에서 활용될 수 있을 것이다.

  • PDF