• 제목/요약/키워드: 위성기반

검색결과 2,274건 처리시간 0.024초

변화 주목 기반 차량 흠집 탐지 시스템 (Change Attention-based Vehicle Scratch Detection System)

  • 이은성;이동준;박건희;이우주;심동규;오승준
    • 방송공학회논문지
    • /
    • 제27권2호
    • /
    • pp.228-239
    • /
    • 2022
  • 본 논문에서는 카셰어링 서비스(car sharing service)에서 차량 상태 무인 검수를 위한 흠집 탐지 딥 러닝 모델을 제안한다. 기존의 차량 상태 검수 시스템은 대여 전, 후 사진에서 각각 흠집을 탐지하는 딥 러닝 모델과 탐지된 두 흠집 영상을 수작업으로 대조하여 새롭게 발생한 흠집을 탐색하는 두 단계로 구성되어 있다. 따라서 수동작업이 필요한 두 단계 모델을 한 단계로 줄이는 무인 흠집 탐지 모델을 위성영상에서 변화를 탐지하는 딥 러닝 모델에 전이 학습을 적용하여 구축한다. 그리고 광택 처리된 자동차 표면의 휘도가 비등방성이고 비전문가인 이용자가 일반 카메라로 촬영하기 때문에 정반사(specular reflection)가 흠집 탐지 성능에 크게 영향을 미친다. 따라서 정반사광으로 발생하는 오탐지를 감소시키기 위하여 정반사광 성분을 제거하는 전처리 과정을 적용한다. 이용자가 휴대폰 카메라로 촬영한 데이터에 대해 제안하는 시스템은 주관적인 측면과 정밀도(precision), 재현율(recall), F1, Kappa 척도면에서 각각 67.90%, 74.56%, 71.08%, 70.18%로서 높은 일치도를 보인다.

Azimuth Stitching 없는 ScanSAR 영상화: 시간영역 교차상관 (A ScanSAR Processing without Azimuth Stitching by Time-domain Cross-correlation)

  • 원중선
    • 대한원격탐사학회지
    • /
    • 제38권3호
    • /
    • pp.251-263
    • /
    • 2022
  • 이 논문은 ScanSAR 영상화에 대한 새로운 아이디어를 소개한다. 버스트(Burst) 모드로 신호를 획득하는 ScanSAR의 전통적인 영상화는 버스트 간 영상을 연결하는 Azimuth stitching이 필요하여, 이 과정은 방사왜곡 및 위상왜곡을 유발한다. 전통적인 SPECAN 방법 대신 이 논문에서는 시간영역 교차상관을 이용하여 Azimuth stitching 과정 없이 영상화가 가능한 새로운 방법을 소개한다. 이 방법의 핵심 아이디어는 기준함수 밴드폭을 적절히 확장하여 시간영역 교차상관을 수행하면 Azimuth stitching 없이도 영상화가 가능하다는 점이다. 이 방법을 실제 위성 원시신호에 적용하여 영상 전 구간에서 영상품질과 방사왜곡 관점에서 우수한 성능을 검증하였다. 버스트 모드를 기반으로 하는 ScanSAR는 영상품질(3 dB 해상도, peak-to-sidelobe ratio (PSLR), 압축률, Speckle 잡음 등)은 모든 품질지표에서 도플러 주파수 전 영역 신호를 이용하는 Stripmap에 비해 낮을 수밖에 없다. 그러나, 각 활용분야 및 기술에 따라 선정된 특정 영상 품질지표 만을 개선할 수 있는 방법은 다양하다. 따라서 ScanSAR 영상화는 모든 활용분야에 획일적인 방법에 의한 영상화보다는, 각 활용에 따라 요구되는 품질지표 우선순위에 따라 최적화할 수 있는 영상화 방법을 적용하는 차별화 전략이 요구된다.

핵 활동 탐지 및 감시를 위한 딥러닝 기반 의미론적 분할을 활용한 변화 탐지 (Change Detection Using Deep Learning Based Semantic Segmentation for Nuclear Activity Detection and Monitoring)

  • 송아람;이창희;이진민;한유경
    • 대한원격탐사학회지
    • /
    • 제38권6_1호
    • /
    • pp.991-1005
    • /
    • 2022
  • 위성 영상은 핵 활동 탐지와 검증을 위한 효율적인 보조자료로 핵시설과 같이 접근이 어렵고 정보가 제한된 지역에 매우 유용하다. 특히 장비의 이동 또는 시설물의 변화와 같이 핵실험을 준비하는 과정은 시계열 분석을 통해 충분히 식별 가능하다. 본 연구에서는 핵 활동과 관련된 주요 객체의 변화를 탐지하기 위하여, 다시기 영상의 의미론적 분할 결과의 차이를 이용하였다. AIHub에서 제공하는 KOMPSAT 3/3A 영상으로 구성된 객체 판독 데이터셋에서 건물, 도로, 소형 객체의 정보를 추출하여 학습하였으며, U-Net, PSPNet, Attention U-Net에 대하여 주요 파라미터를 변경하며 대상 객체 추출에 적합한 의미론적 분할 모델을 분석하였다. 의미론적 분할 결과의 차영상으로 생성된 결과에 객체 정보를 포함하여 최종 변화 탐지를 수행하였으며, 제안 기법을 임의의 변화를 포함한 시뮬레이션 영상에 적용한 결과, 변화 객체를 효과적으로 추출할 수 있었다. 본 연구에서 제시된 변화 탐지 기법을 적용하기 위해서는, 의미론적 분할의 정확도가 우선적으로 확보되어야 하는 제약이 있으나, 추후 실험 대상 지역에 대한 학습데이터셋이 증가할 수록 적용 가능한 분석 범위가 증가할 것으로 기대된다.

데이터 확장을 통한 토지피복분류 U-Net 모델의 성능 개선 (The Performance Improvement of U-Net Model for Landcover Semantic Segmentation through Data Augmentation)

  • 백원경;이명진;정형섭
    • 대한원격탐사학회지
    • /
    • 제38권6_2호
    • /
    • pp.1663-1676
    • /
    • 2022
  • 최근 딥러닝을 활용한 토지피복분류 기법 연구가 다수 수행되고 있다. 그런데 양질의 토지피복 학습데이터를 충분하게 구축되지 못하여 성능이 저하되는 양상이 확인되었다. 이에 따라 본 연구에서는 데이터 확장 기법의 적용을 통한 토지피복분류 성능의 향상을 확인하였다. 분류 모델로는 U-Net이 활용되었으며 AI Hub에서 제공하는 토지피복 위성 이미지 자료를 연구자료로 활용하였다. 원본 데이터로 학습한 모델과 데이터 확장 기법이 적용된 데이터로 학습한 모델의 픽셀 정확도는 각각 0.905와 0.923이었으며 평균 F1 스코어는 각각 0.720과 0.775로 데이터 확장 기법을 적용하였을 때가 보다 우수한 성능을 나타내는 사실을 확인할 수 있었다. 또한 원본 학습데이터를 활용하여 학습한 모델의 경우 건물, 도로, 논, 밭, 산림, 비대상 지역 클래스에 대한 F1 스코어가 0.770, 0.568, 0.733, 0.455, 0.964 그리고 0.830이었으며, 데이터 확장을 적용하였을 때에 각 클래스에 대한 F1 스코어는 각각 0.838, 0.660, 0.791, 0.530, 0.969 그리고 0.860으로 모든 클래스에 대해 데이터 확장이 성능향상에 유효하다는 사실을 확인하였다. 또한, 클래스 균형에 대한 고려없이 데이터 확장을 적용했음에도 불구하고 데이터 불균형에 의한 클래스별 성능 왜곡을 완화할 수 있다는 사실을 확인할 수 있었다. 이는 절대적인 학습데이터의 양이 증가했기 때문이라 판단된다. 본 연구 결과는 다양한 영상 처리 분야에서 데이터 확장 기법의 중요성과 효과를 증명하는 기반 자료의 역할을 수행할 것으로 기대한다.

HRNet 모델을 이용한 항공정사영상간 영상 매칭 (Image Matching for Orthophotos by Using HRNet Model)

  • 성선경;최재완
    • 대한원격탐사학회지
    • /
    • 제38권5_1호
    • /
    • pp.597-608
    • /
    • 2022
  • 원격탐사 자료는 재난, 농업, 도시계획 및 군사 등 다양한 분야에서 활용되며, 최근 다양한 고해상도 센서에서 취득된 시계열 자료의 활용에 대한 요구가 증대되고 있다. 본 연구에서는 시계열 원격탐사 자료의 활용을 위해 딥러닝 기법을 이용한 영상 매칭 방법을 제안하였다. 본 연구에서 적용한 딥러닝 모델은 영상분할 영역에서 많이 사용되고 있는 HRNet을 기반으로 하였다. 특히, 기본영상과 목표영상 간 상관도 맵을 효과적으로 계산하고, 학습의 효율을 높이기 위하여 denseblock을 추가하였다. 국토지리정보원의 다시기 항공정사영상을 이용하여 제안된 모델의 학습을 수행하였으며, 학습에 사용하지 않은 자료를 이용하여 평가를 하고자 하였다. 딥러닝 모델을 이용한 영상매칭 성능을 평가하기 위해 영상 매칭결과와의 비교평가를 수행하였다. 실험 결과, 제안기법을 통한 영상 매칭률이 80%일 때의 평균 오차는 3화소로 ZNCC에 의한 결과인 25화소에 비해 더 높은 정확도를 보였다. 제안된 기법은 식생의 생장에 따라 영상의 변화가 심한 산지 및 농지 지역에 대해서도 효과적임을 확인하였다. 이를 통해 딥러닝을 이용한 기준영상과 목표영상의 매칭을 수행할 수 있을 것으로 판단되며, 위성영상의 상호좌표등록 및 다시기 영상의 정합 등에 활용할 수 있을 것으로 예상된다.

기계학습 기반 고해상도 토양수분 복원을 위한 Sentinel-1 SAR의 자립형 활용성 평가 (Assessment of Stand-alone Utilization of Sentinel-1 SAR for High Resolution Soil Moisture Retrieval Using Machine Learning)

  • 정재환;조성근;전현호;이슬찬;최민하
    • 대한원격탐사학회지
    • /
    • 제38권5_1호
    • /
    • pp.571-585
    • /
    • 2022
  • 기후변화로 인한 가뭄, 홍수, 산불, 산사태 등 자연재해의 위협이 증가함에 따라, 합성개구레이더(Synthetic Aperture Radar, SAR)와 같이 고해상도 토양수분 복원에 대한 사회적 수요도 증가하고 있다. 하지만 국내 환경은 산림 지형의 비율이 높아, 식생과 지형의 영향을 크게 받는 SAR 자료에서 토양수분을 복원하는데 많은 어려움을 겪고 있다. 이에 본 연구에서는 기계학습의 일종인 인공신경망(Artificial Neural Network, ANN) 기법을 활용하여, Sentinel-1 SAR 영상의 자립형 활용성을 평가하였다. Sentinel-1에서 얻을 수 있는 이중편파 산란계수는 토양수분 거동과 유의미한 상관성을 가지고 있음을 확인할 수 있었으며, 다른 위성이나 지점에서 관측된 보조자료를 사용하지 않고도 식생의 효과 등을 보정할 수 있는 자립형 활용 가능성도 확인할 수 있었다. 하지만 각 지점별, 지형 그룹별 특성에 의한 차이가 크게 나타났으며, 특히 산지와 평지에서 학습된 모형을 교차적용하였을 때 토양수분을 제대로 모의할 수 없는 현상이 발생하였다. 또한 이러한 문제를 해결하고자 학습 지점의 수를 늘리는 경우에는 토양수분 복원 모형이 평활화되어 상관계수는 증가하였으나, 지점에서의 오차는 점점 증가하였다. 따라서 고해상도 SAR 토양수분 자료를 광범위하게 적용하기 위해서는 체계적 연구 수행이 선행되어야 하며, 목적에 따른 학습 지점의 선정, 적용 지역의 범위 등을 구체적으로 제한하여 활용한다면 다양한 분야에서 효과적으로 활용할 수 있을 것으로 기대된다.

VIIRS를 활용한 산불 피해 범위 추출 방법 연구 (Forest Fire Area Extraction Method Using VIIRS)

  • 채한성;안재성;최진무
    • 대한원격탐사학회지
    • /
    • 제38권5_2호
    • /
    • pp.669-683
    • /
    • 2022
  • 최근 20년간 산불의 빈도와 피해는 증가하는 경향이 있다. 산불에 효과적으로 대응하기 위해 산불 피해 규모와 범위 등 산불피해에 대한 정보를 잘 관리할 필요가 있다. 따라서 본 연구에서는 VIIRS 위성 영상을 이용하여 대형 산불의 피해 범위에 대한 정보를 빠른 주기로 추출하는 방법을 제시하고자 하였다. 이를 위해 2022년 3월 동해안 산불이 발생한 시기에 한반도를 관측한 VIIRS 자료를 확보하여 영상화하였다. VIIRS 영상은 ISODATA 기법을 활용하여 무감독 분류하였다. 이후 그 결과를 연소 지역과 화염의 위치의 관계를 이용하여 재분류하여 산불피해 범위를 추출하였다. 추출 결과는 검증 및 비교자료와 비교하였다. 비교 결과, 대형 산불의 경우 VIIRS 영상을 분류하여 추출한 것이 산불발생자료를 통해 추정한 것보다 더 정확한 것으로 나타났다. 본 연구를 통해 확인한 산불피해 범위 추출 방법은 산불 관리를 위한 피해 범위자료를 만드는 데 사용할 수 있다. 본 연구 방법을 자동화한다면 VIIRS 기반의 일별 산불피해 모니터링이 가능할 수 있을 것으로 기대된다.

RapidEye 영상정보의 지표반사도 생성을 위한 OTB Extension 개발과 정확도 검증 실험 (An Implementation of the OTB Extension to Produce RapidEye Surface Reflectance and Its Accuracy Validation Experiment)

  • 김광섭;이기원
    • 대한원격탐사학회지
    • /
    • 제38권5_1호
    • /
    • pp.485-496
    • /
    • 2022
  • 이 연구에서 RapidEye 위성영상 대기 및 지표반사도 산출물을 생성하는 소프트웨어를 구현하였다. 이 소프트웨어는 절대대기보정 알고리즘을 채택하고 있는 오픈소스 원격탐사 소프트웨어 Orfeo Toolbox (OTB)기반 Extension이다. 소프트웨어 성능을 확인하기 위하여 구현 결과인 산출물 정확도는 Radiometric Calibration Network (RadCalNet) 사이트의 데이터와 해당 위치에 촬영된 RapidEye 영상을 사용하여 검증하고자 하였다. 또한 거의 같은 일자에 같은 지역을 촬영한 KOMPSAT-3A 영상으로부터 생성한 지표반사도와 Landsat Analysis Ready Data (ARD) 제품 중 하나인 지표반사도 자료도 함께 비교하였다. 이 외에도 같은 영상에 대하여 상업 도구에서 지원하는 QUick Atmospheric Correction (QUAC)와 Fast Line-of-sight Atmospheric Analysis of Spectral Hypercubes (FLAASH) 도구를 적용한 처리 결과와 직접 비교 연구를 수행하였다. RadCalNet 자료에 대비하여 KOMPSAT 지표반사도와 마찬가지로 이 Extension에서 얻은 결과는 5% 이내 일치 수준의 정확도를 나타내었고 QUAC와 FLAASH를 이용한 결과에 비하여 모든 밴드 영상에서 상대적으로 우수한 정확도를 보이는 것으로 나타났다. 농업, 산림이나 환경 분야에서 Red-Edge 밴드의 중요성이 강조되고 있기 때문에 이 소프트웨어를 이용하여 산출되는 RapidEye 영상의 지표반사도 활용도 증가할 것으로 기대한다.

CAE 알고리즘을 이용한 레이더 강우 보정 평가 (Application of convolutional autoencoder for spatiotemporal bias-correction of radar precipitation)

  • 정성호;오성렬;이대업;레수안히엔;이기하
    • 한국수자원학회논문집
    • /
    • 제54권7호
    • /
    • pp.453-462
    • /
    • 2021
  • 최근 몇 년 동안 국지성 집중호우의 빈도가 증가함에 따라 고해상도 레이더 자료의 중요성 및 활용성이 증가하고 있다. 하지만 여전히 레이더 자료의 경우 시·공간적 편의가 존재하고 이를 보정하는 것이 매우 중요하며 많은 연구에서 레이더 강우의 편의 보정을 위해 다양한 통계적 기법이 시도되었다. 본 연구에서는 시·공간적으로 강우를 추정할 수 있는 이중편파레이더의 편의를 지점 강우와 비교하여 보정하는 것을 목표로 한다. 환경부의 수자원관리 및 홍수 예측에 사용되는 S-밴드 이중편파레이더의 편의 보정을 위하여 합성곱신경망(Convolutional Neural Network, CNN)기반의 Convolutional Autoencoder (CAE) 알고리즘을 구축하여 편의 보정을 수행하였다. CAE 모델의 입력자료는 환경부의 10분 단위 레이더 합성 강우자료와 같은 공간해상도로 보간된 지점 관측 강우자료를 사용하였으며, 자료의 기간은 미호천 유역에 홍수 경보가 발령된 2017년 7월 16일 00시부터 13시까지의 10분 단위 자료를 사용하였다. 그 결과로 지점 강우 대비 원시 레이더 강우의 편의가 줄어듦을 확인할 수 있으며 시·공간적으로 개선된 결과를 보여주고 있다. 따라서 각 인접한 격자 간의 공간 관계를 학습하는 CAE 모델은 레이더 및 위성에서 추정되는 격자형 기후 자료의 실시간 편의 보정에 사용할 수 있을 것으로 분석되었다.

토양 내 저장 강수율을 활용한 국내 표층 토양수분 메모리 특성에 관한 연구 (Surface soil moisture memory using stored precipitation fraction in the Korean peninsula)

  • 김기영;이슬찬;이용준;연민호;이기하;최민하
    • 한국수자원학회논문집
    • /
    • 제55권2호
    • /
    • pp.111-120
    • /
    • 2022
  • 물의 흐름을 제어하는 토양의 기능을 정량적으로 계산하기 위한 방법인 토양수분 메모리(soil moisture memory)는 토양에 도달한 강수가 저장되고 배출되기까지 평균적으로 체류하는 시간을 평가한다. 본 연구에서는 2019, 2020년 한반도 지역에서 강수와 토양수분 위성 기반 모델 산출물을 활용하여 표층(0~5 cm)토양에서의 토양수분 메모리를 산출하고 이를 활용하여 연구지역 내 토양수분 메모리의 시공간적인 분포를 지표면의 경사 및 토양의 특성과 함께 평가하였다. 토양수분 메모리를 특성분석을 위해 강수 사건에 따라 토양수분의 증가를 추적하여 저장 강수율(Fp(f))이라는 새로운 측정 지표를 활용하였다. 강수 발생 초기(3시간 후)에는 산맥을 기준으로 토양 내 저장 강수율이 우선적으로 감소하여 토양수분 메모리의 공간적인 편차가 컸으며 24시간 이후 전반적으로 편차가 감소하였다. 토양 내 저장 강수율은 경사가 증가할수록 감소하는 형태가 뚜렷하게 나타났으며 토양 입자 크기의 구성 비율에 따른 토양 내 수분의 배수 활동에 의한 영향을 확인할 수 있었다. 또한 수리전도도 증감에 기여하는 평균토양수분이 저장 강수율에 미치는 영향을 확인하였다. 본 연구 결과는 강수가 지면에 체류하는 시간에 대한 척도인 토양수분 메모리가 지표의 경사와 토양 특성과 갖는 관계를 규명하고 토양수분의 시공간적 변동성을 이해하는 데 기여할 것으로 기대된다.