• Title/Summary/Keyword: 위성고장

Search Result 100, Processing Time 0.023 seconds

GPS Carrier Phase Fault Detection with Consideration on User Dynamics (사용자 다이나믹을 고려한 GPS 반송파 고장검출)

  • Won, Dae Hee;Ahn, Jongsun;Sung, Sangkyung;Lee, Eunsung;Heo, Moon-Beom;Lee, Young Jae
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.40 no.12
    • /
    • pp.1048-1054
    • /
    • 2012
  • This paper presents a Carrier phase fault detection (FD) method for GPS RTK (Global Positioning System Real Time Kinematic) in dynamic environment. There are various error sources in dynamic environment and these errors decrease the reliability of FD results. Due to the reason, Carrier phase measurements are separated into satellite induced signal, user induced signal and other remaining errors. Especially the user-induced signal is computed by user dynamic which is estimated by time-differenced Carrier phase (TDCP) and Doppler shift. TDCP makes it possible to avoid integer ambiguity resolution. Computer simulation is conducted to verify the suggested method. By applying impulse, step and ramp faults, the FD performance is analyzed.

Fault Diagnosis of High-Speed Rotating Machinery With Control Moment Gyro for Medium and Large Satellite Using Envelope Spectrum Analysis (포락선 스펙트럼 분석을 이용한 중대형 위성용 제어모멘트자이로의 고속회전체 고장진단)

  • Kang, Jeong-Min;Song, Tae-Seong;Lee, Jong-Kuk;Song, Deok-Ki;Kwon, Jun-Beom;Lee, Il;Seo, Joong-Bo
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.50 no.6
    • /
    • pp.413-422
    • /
    • 2022
  • In this paper, the fault analysis of the momentum wheel, which is a high-speed rotary machinery of 'Control Moment Gyro' for medium and large satellite, was described. For fault diagnosis, envelope spectrum analysis was performed using Hilbert transformation method and signal demodulation method to find the impact signals periodically generated from amplitude modulated signals. Through this, the fault of the momentum wheel was diagnosed by analyzing whether there was a harmonic component of the rotational frequency and a bearing fault frequency in a specific frequency band with a high peak.

Dendrite Growth Analysis of Satellite SSM(Second Surface Mirror) (위성 열제어 부품 이차면경상의 수상돌기 성장 매카니즘 분석)

  • Lee, Choon-Woo;Lee, Kyun-Ho;Kim, Hui-Kyung
    • Aerospace Engineering and Technology
    • /
    • v.11 no.2
    • /
    • pp.26-32
    • /
    • 2012
  • The purpose of this paper is to present the summary of trouble shooting result on the dendrite defect of SSM(Second Surface Mirror) which is one of major thermal control elements for satellite. Through this failure analysis on SSM dendrite, it is found that the dendrite defect may happen to silver coated layer of SSM if SSM is directly exposed to the environment containing sulfur or chlorine compound. As a preventive action, it is required that SSM shall not contact directly with rubber pad containing sulfur compound.

Modeling and Operation Analysis of $NiH_2$ Battery using Multi-layer Neural Network (다층신경회로망을 이용한 $NiH_2$ 전지 모델링 및 동작상태분석)

  • 최재동;황영성;이학주;성세진
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.4 no.2
    • /
    • pp.192-200
    • /
    • 1999
  • 위성의 전지는 위성의 수명과 직접적인 영향을 갖고 있으며 이것의 정상동작여부에 따라 위성의 안정적인 임무수행여부가 결정된다. 상대적으로 일반화된 셀 모델링의 최근 개발은 NiH2셀의 동특성을 시뮬레이션 하기 위한 기본적인 원리에 기반을 둔 접근방식이다. 그러나 이러한 일반적인 방정식을 통해 비선형성과 전력상태를 포함하는 전지 특성을 예측하는 것은 사실상 불가능하다. 본 연구에서는 다층신경회로망을 이용하여 비선형 특성를 갖는 니켈-하이드로진 전지 특성을 모델링 하였으며, 모델링된 상수값은 위성의 식시간 동안의 전지 전력상태 분석을 위해 사용되었다. 모델링 결과의 정확성을 확인하기 위해 니켈-하이드로진 전지시험결과 분석자료와 비교 검토 되었다. 전지 동작모드는 정상동작모드와 실패모드로 나누어 분석되었다. 정상동작모드는 위성의 식시간 동안 아크젯 동작 여부에 의해 각각 분석되었으며, 또한 태양전지와 배터리 셀 일부의 고장으로 인한 실패모드에서의 전지전력상태가 분석되었다.

  • PDF

Technical Trends of GNSS Clock Anomaly Detection and Resolution (항법위성시계 노후에 따른 이상 현상 감지 및 극복 기술현황)

  • Heo, Youn-Jeong;Cho, Jeong-Ho;Heo, Moon-Beom;Sim, Eun-Sup
    • Current Industrial and Technological Trends in Aerospace
    • /
    • v.8 no.1
    • /
    • pp.77-85
    • /
    • 2010
  • The current GPS constellation consists of 32 Block IIA/IIR/IIR-M satellites including 12 Block IIA satellites on service over 15 years. The satellites in poor space conditions may suffer from anomalies, especially influenced by aging atomic clocks which are of importance positioning and timing. Recently, the IGS Ultra-rapid predicted products have not shown acceptably high quality prediction performance because the Block IIA cesium clocks may be easily affected by various factors such as temperature and environment. The anomalies of aging clocks involve lower performance of positioning in the GPS applications. We, thus, describe satellite clock behaviors and anomalies induced by aging clocks and their detection technologies to avoid such anomalies.

  • PDF

Performance Analysis of GNSS Ephemeris Fault Detection Algorithm Based on Carrier-Phase Measurement (반송파 측정값 기반 GNSS 궤도력 고장 검출 알고리즘 성능 분석)

  • Ahn, Jongsun;Jun, Hyang-Sig;Nam, Gi-Wook;Yeom, Chan-Hong;Lee, Young Jae;Sung, Sangkyung
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.42 no.6
    • /
    • pp.453-460
    • /
    • 2014
  • We analyze fault detection algorithm of ephemeris included in navigation message, which is one of the GNSS risk factors. This algorithm uses carrier-phase measurement and baseline vector of two reference stations and is alternative method for uncertainty condition of previous ephemeris. Even though same ephemeris fault is occurred, the geometry condition, between baseline vector of reference stations and satellites, effects on performance of algorithm. Also, we introduce the suitable geometry of reference stations, threshold and performance index (MDE : Minimum Detectable Error) in jeju international airport.

Construction of Indoor Ground Station for Cubesat Communication Test (큐브위성 송수신시험을 위한 실내용 지상국 구축)

  • Han, Sanghyuck;Moon, Sangman;Shin, Dongyeop;Moon, SungTae;Gong, Hyeon Cheol;Choi, Gi-Hyuk
    • Aerospace Engineering and Technology
    • /
    • v.13 no.2
    • /
    • pp.73-79
    • /
    • 2014
  • During developing cubesat flight software, Communication test between cubesat and ground station is needed. For this, we have constructed indoor ground station without outdoor antenna for decreasing total cost and time. In this time, if output power of ground station is high, it will affect for cubesat transceiver to be fail. For solving this problem, ground station must be designed for output power of it to be lower than input power of cubesat satellite, and it must be verified. In this paper, first, we describe cubesat indoor ground station using UHF and VHF. Second, we describe output power decreasing test for indoor operation of ground station by attaching attenuators in the end of the output connector.

Life Prediction of Failure Mechanisms of the CubeSat Mission Board using Sherlock of Reliability and Life Prediction Tools (신뢰성 수명예측 도구 Sherlock을 이용한 큐브위성용 임무보드의 고장 메커니즘별 수명예측)

  • Jeon, Su-Hyeon;Kwon, Yae-Ha;Kwon, Hyeong-Ahn;Lee, Yong-Geun;Lim, In-OK;Oh, Hyun-Ung
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.44 no.2
    • /
    • pp.172-180
    • /
    • 2016
  • A cubesat classified as a pico-satellite typically uses commercial-grade components that satisfy the vibration and thermal environmental specifications and goes into mission orbit even after undergoing minimum environment tests due to their lower cost and short development period. However, its reliability exposed to the physical environment such as on-orbit thermal vacuum for long periods cannot be assured under minimum tests criterion. In this paper, we have analysed the reliability and life prediction of the failure mechanisms of the cubesat mission board during its service life under the launch and on-orbit environment by using the sherlock software which has been widely used in automobile fields to predict the reliability of electronic devices.

A Study on the Construction of Ground Test Segment for the Time Synchronization System Using the Geostationary Satellite (정지궤도 위성을 이용한 시각동기 지상시스템 시험장비 구축에 관한 연구)

  • Lee, Sang-Cherl;Kim, Bang-Yeop
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.32 no.5
    • /
    • pp.104-108
    • /
    • 2004
  • The most of the CDMA mobile communication depends on the GPS for the time synchronization. Then, we must prepare alternative system against the unusable GPS like a unexpectable accident or strategic purpose by the USA government. In this study, we have constructed ground test segment for the time synchronization system using the geostationary satellite. In addition. we have designed, manufactured and tested the transmitting and receiving board to receive 1 PPS signal from atomic clock for transmitting stored data in buffer to satellite modem and to produce 1 PPS signal from satellite modem for measuring time delay.