• Title/Summary/Keyword: 위상학적

Search Result 369, Processing Time 0.025 seconds

Topologically Adaptable Geometric Snakes (위상변화가 자유로운 기하학적 스네이크)

  • Kim, Haeng-Kang;Seo, Yong-Deuk;Jung, Moon-R.
    • Journal of the Korea Computer Graphics Society
    • /
    • v.9 no.3
    • /
    • pp.1-5
    • /
    • 2003
  • 3차원 메쉬에서 특징을 추출하는 것은 메쉬 에디팅이나 메쉬 모핑 등의 여러 가지 메쉬 처리에 있어서 중요한 일이다. 특징을 추출하는 방법 중에서 사용자가 지정한 부근의 특징을 자동적으로 찾아주는 방법은 이미지 처리 분야에서는 오래 전부터 사용되어 왔는데 이미지 스네이크 알고리즘이 그것이다. 최근에는 그러한 이미지 스네이크 알고리즘이 3차원 메쉬에 적용되어 기하학적인 스네이크 알고리즘으로 탄생하였다. 본 논문은 기하학적 스네이크의 새로운 알고리즘을 제시하고, 찾고자 하는 특징의 모양에 따라 스네이크 곡선의 위상이 자유롭게 변화하는 기하학적 스네이크 모델을 제안한다. 본 논문에 사용된 알고리즘은 이미지 스네이크 알고리즘의 동적 프로그래밍 방법을 3차원 메쉬에 응용한 것으로 스네이크 포인트들이 메쉬의 에지를 따라 3차원 상에서 직접 이동을 하면서 에너지가 최소가 되는 지점을 찾아 가는 방식이다. 스네이크 곡선은 메쉬상의 이웃한 정점들의 순차적인 연결선으로 이루어지며 찾고자 하는 특징의 모양과 크기에 따라 스네이크 포인트의 개수가 자동으로 조절된다. 또한 주변의 다른 스네이크 포인트와 만났을 때 합쳐지거나 반대로 여러 스네이크 곡선으로 나뉘어 질 수 있다.

  • PDF

Validation of the aeromechanics for hingeless rotor using geometrically exact beam model (기하학적 정밀 보 모델을 이용한 무힌지 로터 구조/공력 하중 검증)

  • Han-Yeol Ryu
    • Journal of Aerospace System Engineering
    • /
    • v.17 no.1
    • /
    • pp.24-32
    • /
    • 2023
  • This paper studied HART II in descending flight using rotorcraft analysis code based on geometrically exact beam (GEB) model. The present GEB model expressed by a mixed variational formulation could capture the geometrically nonlinear behavior of the blade without arbitrary assumptions. In previous results, correlation of airloads with structural moments for HART II was not as good as blade deflections. However, in present results, predictions of airloads and structural loads are fairly correlated with measured data.

The Effect of Lattice Topology on Benzyl Alcohol Adsorption on Kaolinite Surfaces: Quantum Chemical Calculations of Mulliken Charges and Magnetic Shielding Tensor (캐올리나이트 규산염 층과 벤질알코올의 반응에 대한 양자화학계산에서 결정학적 위상이 멀리켄 전하와 자기 차폐 텐서에 미치는 영향)

  • Lee, Bum-Han;Lee, Sung-Keun
    • Journal of the Mineralogical Society of Korea
    • /
    • v.20 no.4
    • /
    • pp.313-325
    • /
    • 2007
  • In order to have better insights into adsorption of organic molecules on kaolinite surfaces, we performed quantum chemical calculations of interaction between three different model clusters of kaolinite siloxane surfaces and benzyl alcohol, with emphasis on the effect of size and lattice topology of the cluster on the variation of electron density and magnetic shielding tensor. Model cluster 1 is an ideal silicate tetrahedral surface that consists of 7 hexagonal rings, and model cluster 2 is composed of 7 ditrigonal siloxane rings with crystallographically distinct basal oxygen atoms in the cluster, and finally model cluster 3 has both tetrahedral and octahedral layers. The Mulliken charge analysis shows that siloxane surface of model cluster 3 undergoes the largest electron density transfer after the benzyl alcohol adsorption and that of model cluster 1 is apparently larger than that of model cluster 2. The difference of Mulliken charges of basal oxygen atoms before and after the adsorption is positively correlated with hydrogen bond strength. NMR chemical shielding tensor calculation of clusters without benryl alcohol shows that three different basal oxygen atoms (O3, O4, and O5) in model cluster 2 have the isotropic magnetic shielding tensor as $228.2{\pm}3.9,\;228.9{\pm}3.4,\;and\;222.3{\pm}3.0ppm$, respectively. After the adsorption, the difference of isotropic chemical shift varies from 1 to 5.5 ppm fer model cluster 1 and 2 while model cluster 2 apparently shows larger changes in isotropic chemical shift. The chemical shift of oxygen atoms is also positively correlated with electron density transfer. The current results show that the adsorption of benzyl alcohol on the kaolinite siloxane surfaces can largely be dominated by a weak hydrogen bonding and electrostatic force (charge-charge interaction) and demonstrate the importance of the cluster site and the lattice topology of surfaces on the adsorption behavior of the organic molecules on clay surfaces.

Interrelationship Between Topological Structures and Secondary Vortices in the Near Wake of aCircular Cylinder (실린더 근접후류에서 위상학적 구조와 2차 와류의 상호 관계)

  • Seong, Jae-Yong;Yu, Jeong-Yeol
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.25 no.10
    • /
    • pp.1355-1364
    • /
    • 2001
  • Characteristics of secondary vortices is topologically investigated in the near-wake region of a circular cylinder, where the Taylor's hypothesis does nut hold. The three-dimensional flow fields in the wake-transition regime were measured by a time-resolved PIV for various planes of view. The convection velocities of the Karman and secondary vortices are evaluated from the trajectory of the vortex center. Then, saddle points are determined by applying the critical point theory. It is shown that the inclination angle of the secondary vortices agrees well with the previous experimental data. The flow fields in a moving frame of reference have several critical points and the mushroom-like structure appears in the streamline patterns of the secondary vortices. Since the distributions of fluctuating Reynolds stresses defined by triple decomposition are closely related with the existence of secondary vortices, the physical meaning of them is explained in conjunction with the vortex center and saddle point trajectories.

Topological Structural Optimization under Multiple-Loading Conditions (Multiple-loading condition을 고려한 구조체의 위상학적 최적화)

  • 박재형;홍순조;이리형
    • Computational Structural Engineering
    • /
    • v.9 no.3
    • /
    • pp.179-186
    • /
    • 1996
  • A simple nonlinear programming(NLP) formulation for the optimal topology problem of structures is developed and examined. The NLP formulation is general, and can handle arbitrary objective functions and arbitrary stress, displacement constraints under multiple loading conditions. The formulation is based on simultaneous analysis and design approach to avoid stiffness matrix singularity resulting from zero sizing variables. By embedding the equilibrium equations as equality constraints in the nonlinear programming problem, we avoid constructing and factoring a system stiffness matrix, and hence avoid its singularity. The examples demonstrate that the formulation is effective for finding an optimal solution, and shown to be robust under a variety of constraints.

  • PDF

Topological Mapping and Navigation in Indoor Environment with Invisible Barcode (바코드가 있는 가정환경에서의 위상학적 지도형성 및 자율주행)

  • Huh, Jin-Wook;Chung, Woong-Sik;Chung, Wan-Kyun
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.30 no.9 s.252
    • /
    • pp.1124-1133
    • /
    • 2006
  • This paper addresses the localization and navigation problem using invisible two dimensional barcodes on the floor. Compared with other methods using natural/artificial landmark, the proposed localization method has great advantages in cost and appearance, since the location of the robot is perfectly known using the barcode information after the mapping is finished. We also propose a navigation algorithm which uses the topological structure. For the topological information, we define nodes and edges which are suitable for indoor navigation, especially for large area having multiple rooms, many walls and many static obstacles. The proposed algorithm also has an advantage that errors occurred in each node are mutually independent and can be compensated exactly after some navigation using barcode. Simulation and experimental results. were performed to verify the algorithm in the barcode environment, and the result showed an excellent performance. After mapping, it is also possible to solve the kidnapped case and generate paths using topological information.

3D Object Extraction Algorithm Based on Hierarchical Approach Using Reduced Windowed Fourier Phase (간소화된 윈도우 푸리에 위상을 이용한 계층적 접근기반의 3차원 객체 추출 기법)

  • Min, Gak;Han, Kyu-Phil;Lee, Ky-Soo;Ha, Yeong-Ho
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.27 no.8A
    • /
    • pp.779-785
    • /
    • 2002
  • This paper presents a phase-based stereo matching algorithm in order to efficiently extract 3-dimensional objects from two 2D images. Conventional phase-based methods, especially using windowed Fourier phases, inherit good properties in the case of hierarchical approaches, because they basically use a multi-resolution phase map. On the contrary, their computational costs are very heavy. Therefore, a fast hierarchical approach, using multi-resolution phase-based strategy and reducing the redundancy of phase calculations, is proposed in this pare. In addition, a structural matching algorithm on the phase domain is adopted to improve the matching quality. In experimental results, it is shown that the computation loads are considerably reduced about 8 times and stable outputs are obtained.

Trilinear Isosurface Extraction Using Cell Decomposition (정육면체형 셀의 분해를 이용한 삼중선형 등위면의 계산)

  • Sohn, Bong-Soo
    • Journal of the Korea Society of Computer and Information
    • /
    • v.12 no.2 s.46
    • /
    • pp.83-91
    • /
    • 2007
  • This paper describes an algorithm to compute and visualize a topologically accurate trilinear isosurface from three dimensional volumetric image via cubic cell decomposition. An isosurface is often used for visualizing a three dimensional volumetric image. An isosurface defined in each cubic cell of the volume is triangulated in order to be visualized in a computer. However, most isosurface extraction methods generate a triangulated isosurface which may not be topologically equivalent to the ideal trilinear isosurface. We propose a method to decide a correct connectivity of a trilinear isosurface in a cubic cell and perform appropriate cell decomposition according to the decision. Using the method, we can extract isosurface triangles from the cells generated by the decomposition. We prove that this method generates a triangulated isosurface which is topologically equivalent to the trilinear isosurface. We implemented our proposed algorithm and the result shows it can generate topologically accurate trilinear isosurface.

  • PDF

Review of Quantification of Fracture Characteristics Based on Topological Analysis (위상기하 분석법을 이용한 단열계 특성 정량화의 소개)

  • Son, Hyorok;Kim, Young-Seog
    • The Journal of Engineering Geology
    • /
    • v.31 no.1
    • /
    • pp.1-17
    • /
    • 2021
  • It is important to evaluate the fracture network in a rock volume because fractures control the ground conditions and fluid flow characteristics. Therefore, various attempts have been made to quantify fracture networks to better understand ground and flow conditions. The use of fracture density alone (a quantitative parameter based on geometric analysis) does not fully explain the evolution of fracture networks, or quantify the spatial relationship (e.g. connectivity) of fractures in a rock mass. Therefore, the need for fracture network characterization based on topological analysis has recently emerged. In Korea however, the topological analysis of fracture networks within a rock mass has rarely been studied. As such, the definition of the topological analysis of fracture networks and the graph theory related to the topological analysis are briefly summarized in this study. We also introduce an application method for these analyses to fracture characterization. If the topological method is used for the analysis of fracture networks, it can also be adopted to analyze fluid flow characteristics of groundwater, characterize petroleum reservoirs, and analyze the evolution of a fracture network. In addition, topological analysis can be useful for site selection of major facilities such as nuclear waste disposal sites because it can be used to evaluate the stability of the potential sites.