DOI QR코드

DOI QR Code

Validation of the aeromechanics for hingeless rotor using geometrically exact beam model

기하학적 정밀 보 모델을 이용한 무힌지 로터 구조/공력 하중 검증

  • 류한열 (LIG 넥스원 PGM기계융합연구소)
  • Received : 2022.10.13
  • Accepted : 2022.11.21
  • Published : 2023.02.28

Abstract

This paper studied HART II in descending flight using rotorcraft analysis code based on geometrically exact beam (GEB) model. The present GEB model expressed by a mixed variational formulation could capture the geometrically nonlinear behavior of the blade without arbitrary assumptions. In previous results, correlation of airloads with structural moments for HART II was not as good as blade deflections. However, in present results, predictions of airloads and structural loads are fairly correlated with measured data.

본 논문에서는 기 개발된 로터 블레이드 해석 모델 중 구조 모델을 보완하여 기존에 수행한 HART II의 연구결과와 비교하였다. 구조 모델은 혼합변분 정식화 기반의 기하학적 정밀 보 모델이며, 블레이드의 기하학적 비선형 거동을 정밀하게 예측할 수 있다. 기존 해석 결과에서는 비틀림 변형과 구조하중 결과에서 실험결과 대비 위상차가 발생하였는데 본 연구에서는 기존 결과 대비 위상차가 현저히 감소한 결과를 도출하였다.

Keywords

Acknowledgement

본 연구에 사용한 실험 결과를 도출한 HART II team의 노고에 감사함을 전합니다.

References

  1. B. G. van der Wall, "2nd HHC Aeroacoustic Rotor Test(HART II) - Part I: Test Documentation-, Institute Report IB 111-2003/31," German Aerospace Center(DLR), Braunschweig, Germany, 2003. 
  2. B. G. van der Wall, "2nd HHC Aeroacoustic Rotor Test(HART II) - Part II: Representative Results-, Institute Report IB 111-2005/03," German Aerospace Center(DLR), Braunschweig, Germany, 2005. 
  3. B. G. van der Wall, J. W. Lim, et al., "An Assessment of Comprehensive Code Prediction State-of-Art Using the HART II International Workshop Data," American Helicopter Society International 68th Annual Forum, TX, May, 2012. 
  4. M. J. Smith, et al., "An Assessment of CFD/CSD Prediction State-of-Art Using the HART II International Workshop Data," American Helicopter Society International 68th Annual Forum, TX, May, 2012. 
  5. J. W. Lim, and A. C. B. Dimanlig, "An Investigation of the Fuselage Effect for HART II Using a CFD/CSD Coupled Analysis," Proc. of the American Helicopter Society Specialist's Meeting, 2nd International Forum on Rotorcraft Multidisciplinary Technology, Seoul, Korea, October, 2009. 
  6. W. Johnson, "CAMRAD II, Comprehensive Analytical Model of Rotorcraft Aerodynamics and Dynamics," Johnson Aeronautics, Palo Alto, California, 1992-2005. 
  7. G. Bir, et al., "University of Maryland Advanced Rotor Code(UMARC): Theory Manual, Technical Report UMAERO94-18," Center for Rotorcraft Education and Research, University of Maryland, College Park, July, 1994. 
  8. O. A. Bauchau, "DYMORE Users' Manual," School of Aerospace Engineering, Georgia Institute of Technology, Atalanta, May, 2006. 
  9. D. H. Hodges, "A Mixed Variational Formulation based on Exact Intrinsic Equations for Dynamics of Moving Beams," International Journal of Solids and Structures, vol. 26, no. 11, pp. 1253-1273, 1990.  https://doi.org/10.1016/0020-7683(90)90060-9
  10. Han-yeol, Ryu and Sang-Joon, Shin, "Prediction of the Aeromechanics for HART II rotor in descending flight using Mixed Variational Geometrically Exact Beam Analysis," Journal of Mechanical Science and Technology, vol. 29, no. 1, pp. 141-150, 2015.  https://doi.org/10.1007/s12206-014-1221-0
  11. D. A. Peters, and C. J. He, "Finite State Induced Flow Models Part II: Three-Dimensional Rotor Disk," Journal of Aircraft, vol. 32, no. 2, pp. 1493-1511, 1995.  https://doi.org/10.2514/3.46719
  12. Jae-Sang, Park and et. al., "Loosely coupled multibody dynamics-CFD analysis for a rotor in descending flight," Aerospace Science and Technology, vol. 29, pp. 262-276, 2013. https://doi.org/10.1016/j.ast.2013.03.009