• Title/Summary/Keyword: 위상차이

Search Result 550, Processing Time 0.033 seconds

Multi-Phase Shift Full-Bridge DC/DC Converter (다중 위상천이 풀 브리지 DC/DC 컨버터)

  • Lee, Yong-Chul;Shin, Yong-Saeng;Ji, Sang-Keun;Cho, Sang-Ho;No, Jung-Wook;Hong, Sung-Soo
    • Proceedings of the KIPE Conference
    • /
    • 2012.07a
    • /
    • pp.183-184
    • /
    • 2012
  • 본 논문에서는 출력 인덕터 리플과 2차 측 정류기의 공진 전압을 저감할 수 있는 다중 위상천이 풀 브리지 컨버터를 제안한다. 제안된 회로는 총 8개의 스위치가 사용되며, 각 4개의 스위치가 하나의 위상천이 풀 브리지 인버터 부를 구성하는 구조이다. 기존 위상천이 풀 브리지 컨버터의 경우, 진상레그와 지상레그의 위상차이를 조절하여 출력전압을 제어하는데 반해, 제안된 회로는 진상레그와 지상레그의 위상차이 뿐만 아니라 각 풀 브리지 인버터 부의 위상차이를 동시에 조절하여 출력전압을 제어하는 것이 특징이다. 이를 통하여 제안회로는 출력 인덕터 전류 리플 및 2차 측정류기의 공진 전압을 크게 저감시킬 수 있어 고 효율화에 유리하다. 본 논문에서는 제안된 회로의 이론적 해석 및 PSIM 모의실험을 수행하며, 450W급 시작품을 제작하여 제안회로의 타당성을 검증하였다.

  • PDF

A Parallel Structure Beamformer Using The Compensation for Phase Differences In LOS Environment (LOS환경에서 위상 차이 보상을 이용한 병렬 구조 빔 형성기)

  • 심세준;정성헌;양승철;이충용
    • Proceedings of the IEEK Conference
    • /
    • 2000.09a
    • /
    • pp.95-97
    • /
    • 2000
  • 배열 안테나에서 안테나 소자의 개수의 증가는 안테나의 이득을 증가시킬 수 있으므로 열악한 채널 환경에서도 채널이 필요로 하는 링크 마진을 얻을 수 있다. 그러나, 기존 빔 형성기에서 사용되는 배열 안테나 기법은 많은 계산량과 소모 메모리량 때문에 배열 소자의 개수에 제한이 따르게 된다. 이러한 문제를 해결하기 위하여 본 논문에서는 배열 안테나의 구조에 따른 위상차이를 보상하여 적은 계산량과 메모리를 갖는 배열 위상 차이 보상을 이용한 평행 구조 빔 형성기를 제안한다 배열 위상 차이를 보상하는 기법으로 적은 계산량과 메모리로 개수가 많은 긴 배열 안테나에서 얻을 수 있는 분해능과 안테나 이득을 얻을 수 있다. 제안된 기법의 성능을 비교하기 위해 기존의 빔 형성기법으로delay-sum 빔 형성기와 공분산 행렬의 고유치 해석을 통한 고유벡터 기법의 빔 스펙트럼과 연산량을 비교하였다. 제안된 기법으로 빔 형성을 하면, 배열 안테나의 소자의 개수가 늘어나도 기존의 방법보다 최소 30%의 연산량으로 스펙트럼 상 비슷한 성능을 얻을 수 있다.

  • PDF

A study to 3D dose measurement and evaluation for Respiratory Motion in Lung Cancer Stereotactic Body Radiotherapy Treatment (폐암의 정위적체부방사선치료시 호흡 움직임에 따른 3D 선량 측정평가)

  • Choi, Byeong-Geol;Choi, Chang-Heon;Yun, Il-Gyu;Yang, Jin-Seong;Lee, Dong-Myeong;Park, Ju-Mi
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.26 no.1
    • /
    • pp.59-67
    • /
    • 2014
  • Purpose : This study aims to evaluate 3D dosimetric impact for MIP image and each phase image in stereotactic body radiotherapy (SBRT) for lung cancer using volumetric modulated arc therapy (VMAT). Materials and Methods : For each of 5 patients with non-small-cell pulmonary tumors, a respiration-correlated four-dimensional computed tomography (4DCT) study was performed. We obtain ten 3D CT images corresponding to phases of a breathing cycle. Treatment plans were generated using MIP CT image and each phases 3D CT. We performed the dose verification of the TPS with use of the Ion chamber and COMPASS. The dose distribution that were 3D reconstructed using MIP CT image compared with dose distribution on the corresponding phase of the 4D CT data. Results : Gamma evaluation was performed to evaluate the accuracy of dose delivery for MIP CT data and 4D CT data of 5 patients. The average percentage of points passing the gamma criteria of 2 mm/2% about 99%. The average Homogeneity Index difference between MIP and each 3D data of patient dose was 0.03~0.04. The average difference between PTV maximum dose was 3.30 cGy, The average different Spinal Coad dose was 3.30 cGy, The average of difference with $V_{20}$, $V_{10}$, $V_5$ of Lung was -0.04%~2.32%. The average Homogeneity Index difference between MIP and each phase 3d data of all patient was -0.03~0.03. The average PTV maximum dose difference was minimum for 10% phase and maximum for 70% phase. The average Spain cord maximum dose difference was minimum for 0% phase and maximum for 50% phase. The average difference of $V_{20}$, $V_{10}$, $V_5$ of Lung show bo certain trend. Conclusion : There is no tendency of dose difference between MIP with 3D CT data of each phase. But there are appreciable difference for specific phase. It is need to study about patient group which has similar tumor location and breathing motion. Then we compare with dose distribution for each phase 3D image data or MIP image data. we will determine appropriate image data for treatment plan.

Phase Image of Susceptibility Weighted Image Using High Pass Filter Improved Uniformity (위상영상 획득 시 영상의 균일도 향상을 위한 high pass filter의 적용)

  • Lee, Ho-Beom;Choi, Kwan-Woo;Son, Soon-Yong;Na, Sa-Ra;Lee, Joo-Ah;Min, Jung-Whan;Kim, Hyun-Soo;Ma, Sang-Chull;Jeong, Yeon-Jae;Jeong, Yeon-Gyu;Yoo, Beong-Gyu;Lee, Jong-Seok
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.15 no.11
    • /
    • pp.6702-6709
    • /
    • 2014
  • In this study, a susceptibility weighted image (SWI) showed a wrapped phase and a non-uniformity of the rapid susceptibility difference. Consequently, the bandwidth limits at low frequency were improved by applying HPF. From November 2013 to March 2014, a three-dimensional SWI was obtained from patients and compared with the existing images and HPF phase images. The maximum and minimum signal intensity differences and non-uniformity were analyzed. As a result, a high pass filter before and after applying the maximum and minimum of the signal intensity difference was decreased by 274.16% (498.98), and the non-uniformity was decreased by 439.55% (19.83). After applying the HPF, a comparison with the existing phase images revealed the HPF phase images to have high signal and image uniformity of the SWI image. A high pass filter method can effectively remove the non-uniformity and improve the overall image quality.

Phase-Shifting System Using Zero-Crossing Detection for use in Fiber-Optic ESPI (영점검출을 이용한 광섬유형 전자 스페클 패턴 간섭계의 위상이동)

  • Park, Hyoung-Jun;Song, Min-Ho;Lee, Jun-Ho
    • Korean Journal of Optics and Photonics
    • /
    • v.16 no.6
    • /
    • pp.516-520
    • /
    • 2005
  • We proposed an efficient phase stepping method for the use in fiber-optic ESPI. To improve phase-stepping accuracy and efficiency, a fiber-optic Michelson interferometer was phase-modulated by a ramp-driven fiber stretcher, resulting in 4$\pi$ phase excursion in the PD interference signal. The zero-crossing points of the signal, which have consecutive $\pi$ phase difference, were carefully detected and used to generate trigger signals for the CCD camera. From the experimental results by using this algorithm, $\pi$/2 phase-stepping errors between the speckle patterns were measured to be less than 0.6 mrad with 100 Hz image capture speed. Also it has been shown that the error from the nonlinear phase modulation and environmental perturbations could be minimized without any feedback algorithm.

Characteristics of two extended-cavity diode lasers phase-locked with a 9.2 CHz frequency offset (9.2 GHz 주파수 차이로 위상잠금된 두 외부 공진기 다이오드 레이저의 제작 및 특성 조사)

  • Kwon, Taek-Yong;Shin, Eun-Ju;Yoo, Dae-Hyuk;Lee, Ho-Sung;In, Min-Kyo;Cho, Hyuk;Park, Sang-Eon
    • Korean Journal of Optics and Photonics
    • /
    • v.13 no.6
    • /
    • pp.543-547
    • /
    • 2002
  • We have constructed two extended-cavity diode lasers which are phase-locked with a 9.2 GHz frequency offset. We adopted a digital servo circuit for the phase-locking. The relative linewidth of the phase-locked lasers was less than 2 Hz. Using the measured beat spectrum, we found the carrier concentration to be about 93 %. We measured phase noise and relative frequency stability of the lasers. The Allan deviation at the gate time of 20 s was $2.7{\times}10^{-19}$.

Evaluation of difference in respiratory phase between amplitude- and phase-based four-dimensional computed tomography (위상 기반 사차원전산화단층촬영과 진폭 기반 사차원전산화단층촬영 영상에서의 위상차 평가)

  • Lee, So Hyang;Park, Soo Yeon;Kim, Jong Sik;Choi, Byung Ki;Park, Hee Chul;Jung, Sang Hoon
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.27 no.1
    • /
    • pp.73-78
    • /
    • 2015
  • Purpose : Under the assumption of change to the amplitude based sorting, the study will use four dimensional computed tomography imaging (4DCT) arrayed using the phase based sorting to analyze the respiratory phase difference. Materials and Methods : The study analyzed the 4DCT (4-dimensional computed tomography) images of 10 liver cancer patients that were treated with respiratory gated radiotherapy from 2015 February to March. Using RPM respiratory gating (RPM 1.7.5, Varian, USA) equipment, imaging according to respiratory cycle of phase based sorting was acquired and using a treatment planning system (Pinnacle 9.2, Philips, USA) the acquired imaging according to respiratory cycle was used to measure the abdominal movement value by respiratory cycle. The measuring point was the point where the center point of the Marker Block and the body surface met in the 50% phase image and here the coordinate values Lateral, Vertical, Longitudinal (X, Y, Z) were set as reference points, and on the X, Z plane identical to the reference point, using the identical method the Y axis coordinate value of each 0%, 30%, 40%, 50%, 60%, 80% phase images were acquired to quantitatively measure the variation of distance to the Y axis. The abdominal movement value according to respiration was applied to the theoretical model that the value decreases linearly from maximum inhalation to maximum exhalation to divide the variation of my value to predict as amplitude value by respiratory cycle and conversely the variation in amplitude was recalculated with the phase variation deviation value to analyze. Results : The deviation value between expected value and actual location was the largest in the 30% phase with 0.24 cm, and standard deviation was also the largest in 30% phase with 0.13 cm. The effective value of the deviation value derived from the average of the deviation squared value of each patient appeared as minimum 0.7 cm, maximum 0.18 cm, average 0.12 cm, and standard deviation 0.4 cm. Also by dividing the actual movement distance value with the peak expiration value then converting it into %Phase, the deviation value with actual phase 16.5% in 30% phase, 10.0% and 40% phase, 10.0% and 60% phase, 15.4% and 80% phase, and overall average about 13%, and arraying based on amplitude, phase shift occurred and further it was from peak expiration the chance of deviation occurrence was increasingly measured. Conclusion : Based on the results of the study there were differences between value acquired based on theoretical model and actual value. Therefore in respiratory gated radiotherapy using external surrogates, there needs to be establishment of respiration gated radiation system that avoids the combination of two Sorting methods considering that there will be occurrence of treatment and corresponding clinical differences due to the phase difference that occur due to the Amplitude based Phase Sorting.

  • PDF

Estimation Technique of Time Difference of Acoustic Signal by phase delay in Underwater Environments (수중 환경에서의 위상 지연을 이용한 음향 신호의 시간 차이 추정 기법)

  • Lee, Young-Pil;Moon, Yong-Seon;Ko, Nak-Yong;Choi, Hyun-Taek;Lee, Jeong-Gu;Bae, Young-Chul
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.11 no.4
    • /
    • pp.365-372
    • /
    • 2016
  • Recently, UWAC(: UnderWater Acoustic Communication) has been studied by many scholars and researchers. There are several method to estimate the time-difference between the two signals such estimating as the arrival time of the first non-background segment in both signals and calculate the temporal difference, calculating the cross-correlation between the two signal to infer the time-lagged, and estimating the phase delay to infer the time difference. In this paper, we present estimating method by the phase delay to infer the time difference in two signals.

Design and analysis of direction indicating algorithm for sound reception system based on spectral analysis of whistle signal (기적신호의 스펙트럼 분석을 통한 음향수신장치의 방향탐지 알고리즘 설계 및 분석)

  • Kwon, Hyuk-Jin;Kim, Jeong-Chang
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.41 no.1
    • /
    • pp.83-90
    • /
    • 2017
  • In this paper, a sound reception system using a phase difference of whistle signals is proposed and analyzed based on spectral analysis. The proposed system receives whistle signals from four microphones installed in four different directions with 90-degree intervals between them. The proposed algorithm detects the phase of each received signal based on spectral analysis and estimates the direction of the whistle signal by obtaining the phase difference between the received signals from two adjacent microphones. Furthermore, we theoretically analyze the phase difference between two adjacent received signals according to their arrival angles and implement the proposed system using a DSP chip. In addition, the operation of the proposed algorithm are verified using the implemented system in a laboratory environment. Experimental results show that the proposed scheme can well estimate the direction of the whistle signal.

Overlap and Add Sinusoidal Synthesis Method of Speech Signal using Amplitude-weighted Phase Error Function (정현파 크기로 가중치 된 위상 오류 함수를 사용한 음성의 중첩합산 정현파 합성 방법)

  • Park, Jong-Bae;Kim, Gyu-Jin;Hyeok, Jeong-Gyu;Kim, Jong-Hark;Lee, In-Sung
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.32 no.12C
    • /
    • pp.1149-1155
    • /
    • 2007
  • In this paper, we propose a new overlap and add speech synthesis method which demonstrates improved continuity performance. The proposed method uses a weighted phase error function and minimizes the wave discontinuity of the synthesis signal, rather than the phase discontinuity, to estimate the mid-point phase. Experimental results show that the proposed method improves the continuity between the synthesized signals relative to the existing method.