• Title/Summary/Keyword: 웹 장력

Search Result 18, Processing Time 0.032 seconds

Modeling and Identification of Web Tension Control System with Dancer Roll (댄서롤이 장착된 웹 장력 제어시스템의 모델링 및 규명)

  • Lee, Sang-Hwa;Lee, Jeh-Won;Lee, Hyuk-Jin
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.26 no.11
    • /
    • pp.70-76
    • /
    • 2009
  • Web tension control system recently have been applied to OLED(Organic Light-Emitting Diode), RFID of flexible material, e-Paper and PLED(Polymeric LED) and various web control algorithms have being developed for higher productivity and product quality These system need an accuracy model to design and implement controller. In this paper, the web tension control system with dancer roll is mathematically modeled. Mathematical model consists of 8 subsystems and each subsystems can be described as impedance structure which connected by velocity and tension. Mathematical model is different from the estimated model at high frequency range because of structure dynamics which is ignored on mathematical model. The estimated model is derived using ARMAX model. The controller is designed using the estimated model. The step response of the estimated model are compared with that of physical model for a validation of estimated model. The experimental results show a good match between them.

Tension Control in a Nonlinear Web Transfer System (비선형 웹 이송 시스템의 장력 제어)

  • 윤석찬
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.9 no.5
    • /
    • pp.65-72
    • /
    • 2000
  • This paper presents the study of the tension control in a web transfer system. In this study the sliding mode controller is applied to a time-varying nonlinear mathematical model. The model was derived to consider the effects of changing the roll radius in tension variation during winding and unwinding. The uncertainty in modeling may be due to unmodelled dynamics, on variations in system model. Designed sliding mode controller made the system error always staying in the suggested surface from the beginning. Through this, system is maintained to be robust against a disturbance and uncertainty. To verify the designed controller has a good performance, various inputs such as desired velocity, step input, and trapezoidal input are applied. When the sliding mode controller was used, the system(the tension control) performance was improved comparing to the PID controller. The robustness of the controller with respect to an estimation error was verified through simulations.

  • PDF

Non-linear PID Tension Control in a Winding Process with a Contact Roll and a Nip Roll (접압롤 및 보조닙롤이 있는 권취공정에서의 장력의 비선형 PID제어)

  • 신기현;김규태;천성민
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.15 no.2
    • /
    • pp.45-52
    • /
    • 1998
  • The contact roll is often used to regulate the winding tension as well as the entrained air in a wound roll by adjusting the contact force to the winding roll. But the contact force generated by other rolls, like assistant nip rolls, in a winding(or roll changing) process may act as disturbance to the control of the winding tension. In this paper, the mechanism of a roll change process is analysed. Ana, the behavior of the contact and the nip rolls are mathematically modeled. A nonlinear PID(NPID) controller is designed to control the winding tension and to reject the effect of disturbance generated by the nip roll on the winding tension variation. Computer simulation study showed that the performance of the suggested NPID controller is improved compared with that of the PID controller in controlling the winding tension and in rejecting the effect of the disturbance.

  • PDF

Non-linear tension control in a winding process with a contact roll and a nip roll (접압롤 및 보조롤이 있는 권취공정에서의 장력의 비선형 제어)

  • 신기현;김규태;천성민
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1996.11a
    • /
    • pp.748-753
    • /
    • 1996
  • The contact roll is often used to regulate the winding tension as well as the entrained air in a wound roli by adjusting the contact force to the winding roll. But the contact force generated by other rolls, like assistant nip rolls, in a winding(or roll changing) process may act as disturbance to the control of the winding tension. In this paper, the mechanism of a roll change process is analyzed. And, the behavior of the contact and the assistant nip rolls are mathematically modeled. A nonlinear PID(NPID) controller is designed to control the winding tension and to reject the effect of disturbance generated by the assistant nip roll on the winding tension variation. Computer simulation study showed that the performance of the suggested NPID controller is improved compared with that of the PID controller in con trolling the winding tension and in rejecting the effect of the disturbance.

  • PDF

Analysis of tension properties at roll changing process of a high speed printing machine (고속인쇄기 롤 교체과정의 장력특성 해석)

  • Lee B.J.;Kim S.H.;Kang C.G.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.281-282
    • /
    • 2006
  • Tension control performance is very important in high-speed printing machine. One of the major factors that effect to tension control performance is the process of roll changing. Even if the turret arm moves during roll changing process and the span length of the unwinding system varies, it is customary to neglect it in motion and tension control and to consider it as a disturbance. In this paper, its effect is modeled nonlinearly and compared with linear model, and an effect of an infeeder dancer is analyzed under the condition with no unwinder dancer. We verify the performance of the proposed method via simulation in the high-speed printing machine.

  • PDF