• Title/Summary/Keyword: 웹 마이닝 시스템

Search Result 144, Processing Time 0.031 seconds

Design and Implementation of Web Server for Analyzing Clickstream (클릭스트림 분석을 위한 웹 서버 시스템의 설계 및 구현)

  • Kang, Mi-Jung;Jeong, Ok-Ran;Cho, Dong-Sub
    • The KIPS Transactions:PartD
    • /
    • v.9D no.5
    • /
    • pp.945-954
    • /
    • 2002
  • Clickstream is the information which demonstrate users' path through web sites. Analysis of clickstream shows how web sites are navigated and used by users. Clickstream of online web sites contains effective information of web marketing and to offers usefully personalized services to users, and helps us understand how users find web sites, what products they see, and what products they purchase. In this paper, we present an extended web log system that add to module of collection of clickstream to understand users' behavior patterns In web sites. This system offers the users clickstream information to database which can then analyze it with ease. Using ADO technology in store of database constructs extended web log server system. The process of making clickstreaming into database can facilitate analysis of various user patterns and generates aggregate profiles to offer personalized web service. In particular, our results indicate that by using the users' clickstream. We can achieve effective personalization of web sites.

Web Log Analysis for Studying the Intend to Purchasing Under B2B Environment (B2B에서 구매의도 파악을 위한 웹 로그 분석)

  • Go, Jae-Mun;Seo, Jun-Yong;Kim, Un-Sik
    • Proceedings of the Korean Operations and Management Science Society Conference
    • /
    • 2005.05a
    • /
    • pp.601-613
    • /
    • 2005
  • 일반적으로 B2C가 불특정 다수에 대한 서비스라면 B2B는 특정 소수에 대한 서비스라고 할 수 있다. 이러한 특성으로 B2C와 B2B에서 고객의 구매의도는 다르게 평가되어야 한다. 또한 B2B는 협상이라는 단계가 있고, 이것은 B2C와 B2B의 구매의도 평가기준에 영향을 미치게 된다. 본 연구에서는 B2B에서 구매의도 파악을 위한 웹 로그 분석 모형을 제시한다. 제시된 모형을 통해 구매의도 파악을 위한 웹 로그 분석 데이터를 추출하고, 추출된 데이터를 기업의 레거시 시스템 데이터와 통합하는 과정을 보여준다. 또한 분석 데이터를 추출하기 위한 웹마이닝 과정과 추출된 분석 데이터가 데이터베이스에 저장되는 과정을 보여준다.

  • PDF

Design of Database Cache by Association Mining Method (연관마이닝에 의한 데이터베이스캐시 설계)

  • 사재학;남인길
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.7 no.2
    • /
    • pp.16-32
    • /
    • 2002
  • 효율적인 데이타마트 정보의 축척과 질의 정보 추출을 위한 연관 마이닝 방법을 적용하여 검색 속도를 빠르게 할 수 있도록 테이블을 생성하고 고객의 속성별 가중치와 선호기준을 입력받아 선호 점수를 계산하여 점수가 높은 과목을 우선적으로 검색할 수 있도록 기존 연관 알고리즘에서 사용한 단일 항목 입력 데이터 구조를 확장하여 다중 항목 연관 알고리즘(Multiple Item Association Mining : MIAM)을 이용하여 생성된 연관 검색 유형 테이블을 데이터베이스캐시화를 설계하였다. 동일한 알고리즘에서도 데이터베이스캐시 시스템을 적용한 시스템의 질의 처리 수행속도가 우수성을 이용하여 설계함으로써 효율적인 웹 서버 기능을 수행할 수 있음과 동시에 데이터베이스 캐싱의 주요 이점인 효율성 증대, 속도 향상, 비용절감의 효과를 얻을 수 있으므로 연구 설계하였다.

  • PDF

Product reputation mining based on sentiment analysis (감성 분석 기반의 제품 평판 마이닝)

  • Song, In-Hwan;Han, Jinju;On, Byung-Won
    • Annual Conference on Human and Language Technology
    • /
    • 2019.10a
    • /
    • pp.429-433
    • /
    • 2019
  • 스마트폰 보급의 확산으로 제품 구매 시 웹 사이트 및 SNS를 이용하여 제품 리뷰를 참고하는 소비자들이 증가하고 있다. 전자 상거래 사이트의 제품 리뷰는 구매 예정자들에게 유용한 정보로 활용되곤 한다. 하지만 구매 예정자가 직접 제품에 대한 리뷰 데이터를 찾아 전체 내용을 일일이 읽고 분석해야하기 때문에 시간이 오래 걸릴뿐만 아니라 가공되지 않는 데이터가 줄 수 있는 정보는 한정적이다. 또한 이러한 리뷰들은 상품의 특징을 파악하기에도 어려움이 있다. 본 논문에서는 제품의 주요 이슈를 추출하고 주요 이슈에 대한 감성 분석과 감성 요약을 통해 제품 분석 및 평가를 제공하는 시스템을 설계 및 구현하였다. 이를 휴대폰 제품에 적용하여 구축한 시스템을 통해 소비자가 방대한 양의 제품의 리뷰 데이터를 분석할 필요 없이 제품의 주요 이슈와 가공된 분석 결과를 시각적으로 빠르게 제공받을 수 있음을 보였다.

  • PDF

Temporal Data Mining Framework (시간 데이타마이닝 프레임워크)

  • Lee, Jun-Uk;Lee, Yong-Jun;Ryu, Geun-Ho
    • The KIPS Transactions:PartD
    • /
    • v.9D no.3
    • /
    • pp.365-380
    • /
    • 2002
  • Temporal data mining, the incorporation of temporal semantics to existing data mining techniques, refers to a set of techniques for discovering implicit and useful temporal knowledge from large quantities of temporal data. Temporal knowledge, expressible in the form of rules, is knowledge with temporal semantics and relationships, such as cyclic pattern, calendric pattern, trends, etc. There are many examples of temporal data, including patient histories, purchaser histories, and web log that it can discover useful temporal knowledge from. Many studies on data mining have been pursued and some of them have involved issues of temporal data mining for discovering temporal knowledge from temporal data, such as sequential pattern, similar time sequence, cyclic and temporal association rules, etc. However, all of the works treated data in database at best as data series in chronological order and did not consider temporal semantics and temporal relationships containing data. In order to solve this problem, we propose a theoretical framework for temporal data mining. This paper surveys the work to date and explores the issues involved in temporal data mining. We then define a model for temporal data mining and suggest SQL-like mining language with ability to express the task of temporal mining and show architecture of temporal mining system.

Design of Web-based Phylogentic Tree Inference System Using DataBase (데이터 베이스를 이용한 웹 기반 계통수 추론 시스템 설계)

  • Kim, Shin-Suck;Hwang, Bu-Hyun
    • Annual Conference of KIPS
    • /
    • 2001.10a
    • /
    • pp.121-124
    • /
    • 2001
  • 계통수는 특정 객체의 분류 즉 특정 객체로부터 추출한 염기서열을 이용하여 그 객체의 소속 분류 집단을 결정하기 위해서 사용될 수 있다. 만약 특정지역에서 획득한 토끼의 종을 구분하기 위해서 이미 분류된 토끼의 염기서열들을 가지고 염기서열들과의 관계를 표현하는 계통수를 제작함으로써, 객체를 분류 할 수 있다. 계통수 제작은 기존의 계통수 제작 도구들(MEGA등)이 사용되지만, 이러한 계통수 제작 도구는 객체의 어떤 특성에 의해서 종이 나뉘어지는 가는 예측 할 수 없다. 계통수 제작에 이용되는 염기서열 데이터는 기존의 염기서열 데이터 베이스들(EMBL, GenBank, DDBJ)에서 인터넷을 이용하여 찾을 수 있지만, 계통생물학을 위해 누적된 데이터가 아니므로, 계통수 제작을 위해서는 사용이 제한적이다. 또 계통수 제작 도구을 사용하기 위해서는 자신이 관련 염기서열 데이터를 수집하여야 한다. 본 논문은 웹기반 계통수 추론 시스템을 제시한다. 본 시스템은 염기서열 데이터를 검색하여, 계통 분류 즉 계통수 제작을 위한 데이터로 저장하고, 이를 이용하여 계통수를 그릴 수 있다. 또한 이렇게 저장된 데이터는 데이터 마이닝 분류 기법을 사용하여, 각 객체 분류 집단을 모델링하며, 분류 속성을 예측할 수 있다.

  • PDF

Personalized Advertisement Service Method Using Web Log Mining (웹로그 마이닝을 이용한 개인화 광고 서비스 기법)

  • Kim, Seok-Hun;Kim, Eun-Soo
    • The Journal of Korean Association of Computer Education
    • /
    • v.8 no.1
    • /
    • pp.117-127
    • /
    • 2005
  • Numerous internet pop advertisement are being provided according to the rapid development of e-commercial and a rise in users. However, it has not been based on analysis of users' inclination but just one-sided providing. With that reason, many web-site provider want to advertis e more efficient and distinguished Internet-advertisement as analyzing Server's Log accessed. In this thesis, we have studied and tested relatively simply adoption system to provide personalized advertisement service. In order to influence personal disposition to system as the most effective way, it first of all uses History files as source data and after refining it, it can search not only visitors' inclination but also the others' visit-list on the other server. As a result of it, it can make advertisement more reality and activity.

  • PDF

Merchandise Management Using Web Mining in Business To Customer Electronic Commerce (기업과 소비자간 전자상거래에서의 웹 마이닝을 이용한 상품관리)

  • 임광혁;홍한국;박상찬
    • Journal of Intelligence and Information Systems
    • /
    • v.7 no.1
    • /
    • pp.97-121
    • /
    • 2001
  • Until now, we have believed that one of advantages of cyber market is that it can virtually display and sell goods because it does not necessary maintain expensive physical shops and inventories. But, in a highly competitive environment, business model that does away with goods in stock must be modified. As we know in the case of AMAZON, leading companies already consider merchandise management as a critical success factor in their business model. That is, a solution to compete against one's competitors in a highly competitive environment is merchandise management as in the traditional retail market. Cyber market has not only past sales data but also web log data before sales data that contains information of path that customer search and purchase on cyber market as compared with traditional retail market. So if we can correctly analyze the characteristics of before sales patterns using web log data, we can better prepare for the potential customers and effectively manage inventories and merchandises. We introduce a systematic analysis method to extract useful data for merchandise management - demand forecasting, evaluating & selecting - using web mining that is the application of data mining techniques to the World Wide Web. We use various techniques of web mining such as clustering, mining association rules, mining sequential patterns.

  • PDF

Constructing A Small Tree with High Accuracy through Web Log Classification (웹 로그 분석을 통한 높은 정확도를 가지는 소형 트리 구축)

  • Hyun Woo-Seok
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2006.06b
    • /
    • pp.229-231
    • /
    • 2006
  • 웹 마이닝은 e-서비스 시스템에서 고객 활동을 분석하기 위하여 널리 보급된 방법 중 하나로서 궁극적인 목표는 새로운 고객을 얻고 기존 고객을 유지하면서 고객의 생산성을 증가시키는데 도움을 줄 수 있는 유용한 정보를 인식하는 것이다. 그러나 웹 로그 자료와 고객의 구매 패턴 사이에 직접적인 관계가 없고, 실험 데이터 집합이 적고 부정확 할 경우 실험 데이터의 적은 집합만으로 유용한 정보를 인식하는 것은 불충분하기 때문에 유용한 정보를 인식하는 것은 더욱 어렵게 된다. 본 논문에서는 기업들에게 유용한 패턴을 제공할 수 있는 독자적인 분류 방법을 사용하여 기존 고객의 보존력을 높일 수 있는 높은 정확도를 가지는 소형 트리를 구축할 수 있었다.

  • PDF

Design of a Product Recommender based on Web Log Analysis (웹 로그 분석에 기반한 상품 추천기의 설계)

  • 김건량;이도헌
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2000.10a
    • /
    • pp.349-352
    • /
    • 2000
  • As a lot of people have used electronic commerce, many shopping malls have appeared on the Interne and the shopping information in them has been enormous. So, the need for a system to recommend product to customers is on the increase so as to reduce time and efforts for shopping. In this paper, we suppose a Product Recommender System which is constructed by applying data mining techniques to web for files and analyzing customer's action pattern, customer's profile and product purchase data. This system offers convenience that customers can get their desired information easily, by sending e-mail or mail and recommending web pages when they visit a shopping mall.

  • PDF