• Title/Summary/Keyword: 웹사용성

Search Result 2,299, Processing Time 0.041 seconds

The Development of On-Line Statistics Program for Radiation Oncology (방사선종양학과 On-line 통계처리프로그램의 개발)

  • Kim Yoon-Jong;Lee Dong-Hoon;Ji Young-Hoon;Lee Dong-Han;Jo Chul-Ku;Kim Mi-Sook;Ru Sung-Rul;Hong Seung-Hong
    • Radiation Oncology Journal
    • /
    • v.19 no.4
    • /
    • pp.369-380
    • /
    • 2001
  • Purpose : By developing on-line statistics program to record the information of radiation oncology to share the information with internet. It is possible to supply basic reference data for administrative plans to improve radiation oncology. Materials and methods : The information of radiation oncology statistics had been collected by paper forms about 52 hospitals in the past. Now, we can input the data by internet web browsers. The statistics program used windows NT 4.0 operation system, Internal Information Server 4.0 (IIS4.0) as a web server and the Microsoft Access MDB. We used Structured Query Language (SQL), Visual Basic, VBScript and JAVAScript to display the statistics according to years and hospitals. Results : This program shows present conditions about man power, research, therapy machines, technics, brachytherapy, clinic statistics, radiation safety management, institution, quality assurance and radioisotopes in radiation oncology department. The database consists of 38 inputs and 6 outputs windows. Statistical output windows can be increased continuously according to user's need. Conclusion : We have developed statistics program to process all of the data in department of radiation oncology for reference information. Users easily could input the data by internet web browsers and share the information.

  • PDF

Tracing the Development and Spread Patterns of OSS using the Method of Netnography - The Case of JavaScript Frameworks - (네트노그라피를 이용한 공개 소프트웨어의 개발 및 확산 패턴 분석에 관한 연구 - 자바스크립트 프레임워크 사례를 중심으로 -)

  • Kang, Heesuk;Yoon, Inhwan;Lee, Heesan
    • Management & Information Systems Review
    • /
    • v.36 no.3
    • /
    • pp.131-150
    • /
    • 2017
  • The purpose of this study is to observe the spread pattern of open source software (OSS) while establishing relations with surrounding actors during its operation period. In order to investigate the change pattern of participants in the OSS, we use a netnography on the basis of online data, which can trace the change patterns of the OSS depending on the passage of time. For this, the cases of three OSSs (e.g. jQuery, MooTools, and YUI), which are JavaScript frameworks, were compared, and the corresponding data were collected from the open application programming interface (API) of GitHub as well as blog and web searches. This research utilizes the translation process of the actor-network theory to categorize the stages of the change patterns on the OSS translation process. In the project commencement stage, we identified the type of three different OSS-related actors and defined associated relationships among them. The period, when a master commences a project at first, is refined through the course for the maintenance of source codes with persons concerned (i.e. project growth stage). Thereafter, the period when the users have gone through the observation and learning period by being exposed to promotion activities and codes usage respectively, and becoming to active participants, is regarded as the 'leap of participants' stage. Our results emphasize the importance of promotion processes in participants' selection of the OSS for participation and confirm the crowding-out effect that the rapid speed of OSS development retarded the emergence of participants.

  • PDF

Revisiting the cause of unemployment problem in Korea's labor market: The job seeker's interests-based topic analysis (취업준비생 토픽 분석을 통한 취업난 원인의 재탐색)

  • Kim, Jung-Su;Lee, Suk-Jun
    • Management & Information Systems Review
    • /
    • v.35 no.1
    • /
    • pp.85-116
    • /
    • 2016
  • The present study aims to explore the causes of employment difficulty on the basis of job applicant's interest from P-E (person-environment) fit perspective. Our approach relied on a textual analytic method to reveal insights from their situational interests in a job search during the change of labor market. Thus, to investigate the type of major interests and psychological responses, user-generated texts in a social community were collected for analysis between January 1, 2013 through December 31, 2015 by crawling the online-community in regard to job seeking and sharing information and opinions. The results of topic analysis indicated user's primary interests were divided into four types: perception of vocation expectation, employment pre-preparation behaviors, perception of labor market, and job-seeking stress. Specially, job applicants put mainly concerns of monetary reward and a form of employment, rather than their work values or career exploration, thus youth job applicants expressed their psychological responses using contextualized language (e.g., slang, vulgarisms) for projecting their unstable state under uncertainty in response to environmental changes. Additionally, they have perceived activities in the restricted preparation (e.g., certification, English exam) as determinant factors for success in employment and suffered form job-seeking stress. On the basis of these findings, current unemployment matters are totally attributed to the absence of pursing the value of vocation and job in individuals, organizations, and society. Concretely, job seekers are preoccupied with occupational prestige in social aspect and have undecided vocational value. On the other hand, most companies have no perception of the importance of human resources and have overlooked the needs for proper work environment development in respect of stimulating individual motivation. The attempt in this study to reinterpret the effect of environment as for classifying job applicant's interests in reference to linguistic and psychological theories not only helps conduct a more comprehensive meaning for understanding social matters, but guides new directions for future research on job applicant's psychological factors (e.g., attitudes, motivation) using topic analysis.

  • PDF

Development and Analyses of Effects of ICT Teaching: Learning Process Plan for 'Designing My Home' unit of Technology.Home Economic in High School (ICT활용 교수.학습 과정안 개발 및 효과 분석: 고등학교 기술.가정 "나의 주거 공간꾸미기" 단원을 중심으로)

  • Park Hyun-Sook;Cho Jae-Soon
    • Journal of Korean Home Economics Education Association
    • /
    • v.18 no.2 s.40
    • /
    • pp.15-27
    • /
    • 2006
  • The purpose of this research was to develop and analyze the effects of ICT based teaching learning process plans for 'Designing My Home' unit of Technology Home Economics subject in High School. The seven housing contents were selected from 8 textbooks and 8 teaching resources at the analyses stage. A specific homepage(ieduhome.cafe.com) was built to utilize the eight ICT teaching learning process plan as well as many other resources at the planning & development stages. The number of 68 highschool students have participated for the application stage during September 4-26, 2003 and the same number have studied the same contents through regular teaching learning plans as a comparison group. Experimental groups have significantly more increased in the knowledge and understanding of the housing contents than have comparison groups. The same results occurred in the interests in Home Economics, Housing, and Internet utilized study. The Design reports were not statistically differed between two groups based on the objective evaluation criteria. The results of this study generally supported previous research and showed that the In teaching learning plans were more effective in various aspects than were the regular plans.

  • PDF

Improving Performance of Recommendation Systems Using Topic Modeling (사용자 관심 이슈 분석을 통한 추천시스템 성능 향상 방안)

  • Choi, Seongi;Hyun, Yoonjin;Kim, Namgyu
    • Journal of Intelligence and Information Systems
    • /
    • v.21 no.3
    • /
    • pp.101-116
    • /
    • 2015
  • Recently, due to the development of smart devices and social media, vast amounts of information with the various forms were accumulated. Particularly, considerable research efforts are being directed towards analyzing unstructured big data to resolve various social problems. Accordingly, focus of data-driven decision-making is being moved from structured data analysis to unstructured one. Also, in the field of recommendation system, which is the typical area of data-driven decision-making, the need of using unstructured data has been steadily increased to improve system performance. Approaches to improve the performance of recommendation systems can be found in two aspects- improving algorithms and acquiring useful data with high quality. Traditionally, most efforts to improve the performance of recommendation system were made by the former approach, while the latter approach has not attracted much attention relatively. In this sense, efforts to utilize unstructured data from variable sources are very timely and necessary. Particularly, as the interests of users are directly connected with their needs, identifying the interests of the user through unstructured big data analysis can be a crew for improving performance of recommendation systems. In this sense, this study proposes the methodology of improving recommendation system by measuring interests of the user. Specially, this study proposes the method to quantify interests of the user by analyzing user's internet usage patterns, and to predict user's repurchase based upon the discovered preferences. There are two important modules in this study. The first module predicts repurchase probability of each category through analyzing users' purchase history. We include the first module to our research scope for comparing the accuracy of traditional purchase-based prediction model to our new model presented in the second module. This procedure extracts purchase history of users. The core part of our methodology is in the second module. This module extracts users' interests by analyzing news articles the users have read. The second module constructs a correspondence matrix between topics and news articles by performing topic modeling on real world news articles. And then, the module analyzes users' news access patterns and then constructs a correspondence matrix between articles and users. After that, by merging the results of the previous processes in the second module, we can obtain a correspondence matrix between users and topics. This matrix describes users' interests in a structured manner. Finally, by using the matrix, the second module builds a model for predicting repurchase probability of each category. In this paper, we also provide experimental results of our performance evaluation. The outline of data used our experiments is as follows. We acquired web transaction data of 5,000 panels from a company that is specialized to analyzing ranks of internet sites. At first we extracted 15,000 URLs of news articles published from July 2012 to June 2013 from the original data and we crawled main contents of the news articles. After that we selected 2,615 users who have read at least one of the extracted news articles. Among the 2,615 users, we discovered that the number of target users who purchase at least one items from our target shopping mall 'G' is 359. In the experiments, we analyzed purchase history and news access records of the 359 internet users. From the performance evaluation, we found that our prediction model using both users' interests and purchase history outperforms a prediction model using only users' purchase history from a view point of misclassification ratio. In detail, our model outperformed the traditional one in appliance, beauty, computer, culture, digital, fashion, and sports categories when artificial neural network based models were used. Similarly, our model outperformed the traditional one in beauty, computer, digital, fashion, food, and furniture categories when decision tree based models were used although the improvement is very small.

Analysis of Tourism Popularity Using T-map Search andSome Trend Data: Focusing on Chuncheon-city, Gangwon-province (T맵 검색지와 썸트랜드 데이터를 이용한 관광인기도분석: 강원도 춘천을 중심으로)

  • TaeWoo Kim;JaeHee Cho
    • Journal of Service Research and Studies
    • /
    • v.12 no.1
    • /
    • pp.25-35
    • /
    • 2022
  • Covid-19, of which the first patient in Korea occurred in January 2020, has affected various fields. Of these, the tourism sector might havebeen hit the hardest. In particular, since tourism-based industrial structure forms the basis of the region, Gangwon-province, and the tourism industry is the main source of income for small businesses and small enterprises, the damage is great. To check the situation and extent of such damage, targeting the Chuncheon region, where public access is the most convenient among the Gangwon regions, one-day tours are possible using public transportation from Seoul and the metropolitan area, with a general image that low expense tourism is recognized as possible, this study conducted empirical analysis through data analysis. For this, the general status of the region was checked based on the visitor data of Chuncheon city provided by the tourist information system, and to check the levels ofinterest in 2019, before Covid-19, and in 2020, after Covid-19, by comparing keywords collected from the web service sometrend of Vibe Company Inc., a company specializing in keyword collection, with SK Telecom's T-map search site data, which in parallel provides in-vehicle navigation service and communication service, this study analyzed the general regional image of Chuncheon-city. In addition, by comparing data from two years by developing a tourism popularity index applying keywords and T-map search site data, this study examined how much the Covid-19 situation affected the level of interest of visitors to the Chuncheon area leading to actual visits using a data analysis approach. According to the results of big data analysis applying the tourism popularity index after designing the data mart, this study confirmed that the effect of the Covid-19 situation on tourism popularity in Chuncheon-city, Gangwon-provincewas not significant, and confirmed the image of tourist destinations based on the regional characteristics of the region. It is hoped that the results of this research and analysis can be used as useful reference data for tourism economic policy making.

Characteristics and Implications of Sports Content Business of Big Tech Platform Companies : Focusing on Amazon.com (빅테크 플랫폼 기업의 스포츠콘텐츠 사업의 특징과 시사점 : 아마존을 중심으로)

  • Shin, Jae-hyoo
    • Journal of Venture Innovation
    • /
    • v.7 no.1
    • /
    • pp.1-15
    • /
    • 2024
  • This study aims to elucidate the characteristics of big tech platform companies' sports content business in an environment of rapid digital transformation. Specifically, this study examines the market structure of big tech platform companies with a focus on Amazon, revealing the role of sports content within this structure through an analysis of Amazon's sports marketing business and provides an outlook on the sports content business of big tech platform companies. Based on two-sided market platform business models, big tech platform companies incorporate sports content as a strategy to enhance the value of their platforms. Therefore, sports content is used as a tool to enhance the value of their platforms and to consolidate their monopoly position by maximizing profits by increasing the synergy of platform ecosystems such as infrastructure. Amazon acquires popular live sports broadcasting rights on a continental or national basis and supplies them to its platforms, which not only increases the number of new customers and purchasing effects, but also provides IT solution services to sports organizations and teams while planning and supplying various promotional contents, thus creates synergy across Amazon's platforms including its advertising business. Amazon also expands its business opportunities and increases its overall value by supplying live sports contents to Amazon Prime Video and Amazon Prime, providing technical services to various stakeholders through Amazon Web Services, and offering Amazon Marketing Cloud services for analyzing and predicting advertisers' advertising and marketing performance. This gives rise to a new paradigm in the sports marketing business in the digital era, stemming from the difference in market structure between big tech companies based on two-sided market platforms and legacy global companies based on one-sided markets. The core of this new model is a business through the development of various contents based on live sports streaming rights, and sports content marketing will become a major field of sports marketing along with traditional broadcasting rights and sponsorship. Big tech platform global companies such as Amazon, Apple, and Google have the potential to become new global sports marketing companies, and the current sports marketing and advertising companies, as well as teams and leagues, are facing both crises and opportunities.

Empirical Analysis on Bitcoin Price Change by Consumer, Industry and Macro-Economy Variables (비트코인 가격 변화에 관한 실증분석: 소비자, 산업, 그리고 거시변수를 중심으로)

  • Lee, Junsik;Kim, Keon-Woo;Park, Do-Hyung
    • Journal of Intelligence and Information Systems
    • /
    • v.24 no.2
    • /
    • pp.195-220
    • /
    • 2018
  • In this study, we conducted an empirical analysis of the factors that affect the change of Bitcoin Closing Price. Previous studies have focused on the security of the block chain system, the economic ripple effects caused by the cryptocurrency, legal implications and the acceptance to consumer about cryptocurrency. In various area, cryptocurrency was studied and many researcher and people including government, regardless of country, try to utilize cryptocurrency and applicate to its technology. Despite of rapid and dramatic change of cryptocurrencies' price and growth of its effects, empirical study of the factors affecting the price change of cryptocurrency was lack. There were only a few limited studies, business reports and short working paper. Therefore, it is necessary to determine what factors effect on the change of closing Bitcoin price. For analysis, hypotheses were constructed from three dimensions of consumer, industry, and macroeconomics for analysis, and time series data were collected for variables of each dimension. Consumer variables consist of search traffic of Bitcoin, search traffic of bitcoin ban, search traffic of ransomware and search traffic of war. Industry variables were composed GPU vendors' stock price and memory vendors' stock price. Macro-economy variables were contemplated such as U.S. dollar index futures, FOMC policy interest rates, WTI crude oil price. Using above variables, we did times series regression analysis to find relationship between those variables and change of Bitcoin Closing Price. Before the regression analysis to confirm the relationship between change of Bitcoin Closing Price and the other variables, we performed the Unit-root test to verifying the stationary of time series data to avoid spurious regression. Then, using a stationary data, we did the regression analysis. As a result of the analysis, we found that the change of Bitcoin Closing Price has negative effects with search traffic of 'Bitcoin Ban' and US dollar index futures, while change of GPU vendors' stock price and change of WTI crude oil price showed positive effects. In case of 'Bitcoin Ban', it is directly determining the maintenance or abolition of Bitcoin trade, that's why consumer reacted sensitively and effected on change of Bitcoin Closing Price. GPU is raw material of Bitcoin mining. Generally, increasing of companies' stock price means the growth of the sales of those companies' products and services. GPU's demands increases are indirectly reflected to the GPU vendors' stock price. Making an interpretation, a rise in prices of GPU has put a crimp on the mining of Bitcoin. Consequently, GPU vendors' stock price effects on change of Bitcoin Closing Price. And we confirmed U.S. dollar index futures moved in the opposite direction with change of Bitcoin Closing Price. It moved like Gold. Gold was considered as a safe asset to consumers and it means consumer think that Bitcoin is a safe asset. On the other hand, WTI oil price went Bitcoin Closing Price's way. It implies that Bitcoin are regarded to investment asset like raw materials market's product. The variables that were not significant in the analysis were search traffic of bitcoin, search traffic of ransomware, search traffic of war, memory vendor's stock price, FOMC policy interest rates. In search traffic of bitcoin, we judged that interest in Bitcoin did not lead to purchase of Bitcoin. It means search traffic of Bitcoin didn't reflect all of Bitcoin's demand. So, it implies there are some factors that regulate and mediate the Bitcoin purchase. In search traffic of ransomware, it is hard to say concern of ransomware determined the whole Bitcoin demand. Because only a few people damaged by ransomware and the percentage of hackers requiring Bitcoins was low. Also, its information security problem is events not continuous issues. Search traffic of war was not significant. Like stock market, generally it has negative in relation to war, but exceptional case like Gulf war, it moves stakeholders' profits and environment. We think that this is the same case. In memory vendor stock price, this is because memory vendors' flagship products were not VRAM which is essential for Bitcoin supply. In FOMC policy interest rates, when the interest rate is low, the surplus capital is invested in securities such as stocks. But Bitcoin' price fluctuation was large so it is not recognized as an attractive commodity to the consumers. In addition, unlike the stock market, Bitcoin doesn't have any safety policy such as Circuit breakers and Sidecar. Through this study, we verified what factors effect on change of Bitcoin Closing Price, and interpreted why such change happened. In addition, establishing the characteristics of Bitcoin as a safe asset and investment asset, we provide a guide how consumer, financial institution and government organization approach to the cryptocurrency. Moreover, corroborating the factors affecting change of Bitcoin Closing Price, researcher will get some clue and qualification which factors have to be considered in hereafter cryptocurrency study.

Analysis of shopping website visit types and shopping pattern (쇼핑 웹사이트 탐색 유형과 방문 패턴 분석)

  • Choi, Kyungbin;Nam, Kihwan
    • Journal of Intelligence and Information Systems
    • /
    • v.25 no.1
    • /
    • pp.85-107
    • /
    • 2019
  • Online consumers browse products belonging to a particular product line or brand for purchase, or simply leave a wide range of navigation without making purchase. The research on the behavior and purchase of online consumers has been steadily progressed, and related services and applications based on behavior data of consumers have been developed in practice. In recent years, customization strategies and recommendation systems of consumers have been utilized due to the development of big data technology, and attempts are being made to optimize users' shopping experience. However, even in such an attempt, it is very unlikely that online consumers will actually be able to visit the website and switch to the purchase stage. This is because online consumers do not just visit the website to purchase products but use and browse the websites differently according to their shopping motives and purposes. Therefore, it is important to analyze various types of visits as well as visits to purchase, which is important for understanding the behaviors of online consumers. In this study, we explored the clustering analysis of session based on click stream data of e-commerce company in order to explain diversity and complexity of search behavior of online consumers and typified search behavior. For the analysis, we converted data points of more than 8 million pages units into visit units' sessions, resulting in a total of over 500,000 website visit sessions. For each visit session, 12 characteristics such as page view, duration, search diversity, and page type concentration were extracted for clustering analysis. Considering the size of the data set, we performed the analysis using the Mini-Batch K-means algorithm, which has advantages in terms of learning speed and efficiency while maintaining the clustering performance similar to that of the clustering algorithm K-means. The most optimized number of clusters was derived from four, and the differences in session unit characteristics and purchasing rates were identified for each cluster. The online consumer visits the website several times and learns about the product and decides the purchase. In order to analyze the purchasing process over several visits of the online consumer, we constructed the visiting sequence data of the consumer based on the navigation patterns in the web site derived clustering analysis. The visit sequence data includes a series of visiting sequences until one purchase is made, and the items constituting one sequence become cluster labels derived from the foregoing. We have separately established a sequence data for consumers who have made purchases and data on visits for consumers who have only explored products without making purchases during the same period of time. And then sequential pattern mining was applied to extract frequent patterns from each sequence data. The minimum support is set to 10%, and frequent patterns consist of a sequence of cluster labels. While there are common derived patterns in both sequence data, there are also frequent patterns derived only from one side of sequence data. We found that the consumers who made purchases through the comparative analysis of the extracted frequent patterns showed the visiting pattern to decide to purchase the product repeatedly while searching for the specific product. The implication of this study is that we analyze the search type of online consumers by using large - scale click stream data and analyze the patterns of them to explain the behavior of purchasing process with data-driven point. Most studies that typology of online consumers have focused on the characteristics of the type and what factors are key in distinguishing that type. In this study, we carried out an analysis to type the behavior of online consumers, and further analyzed what order the types could be organized into one another and become a series of search patterns. In addition, online retailers will be able to try to improve their purchasing conversion through marketing strategies and recommendations for various types of visit and will be able to evaluate the effect of the strategy through changes in consumers' visit patterns.