• Title/Summary/Keyword: 웹데이터

Search Result 3,399, Processing Time 0.029 seconds

Developing the District Unit Plan Simulation using Procedural Modeling (절차적 모델링을 활용한 지구단위계획 시뮬레이션 개발)

  • Jun, Jin Hwan;Kim, Chung Ho
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.22 no.3
    • /
    • pp.546-559
    • /
    • 2021
  • This research aimed to develop the district unit plan simulation using procedural modeling based on shape grammar. For this, Esri's CityEngine 2020.0 was selected as a main development tool, and Inside Commercial Area in Bangi-dong, Songpa-gu, Seoul as the research site where about 25% of the total area was developed over the past five years. Specifically, the research developed the simulation through the following three phases of Data-Information-Knowledge after selecting necessary parameters. In the Data phase, 2 and 3 dimensional data were obtained by utilizing data sharing platforms. In the next Information phase, the acquired data were generated into various procedural models according to the shape grammar, and the 2D and 3D layers were then integrated using relevant applications. In the final Knowledge phase, three-dimensional spatial analysis and storytelling contents were produced based on the integrated layer. As a result, the research suggests the following three implications for the simulation development. First, data accuracy and improvement of sharing platforms are needed in order to effectively carry out the simulation development. Second, the guidelines for district unit plans could be utilized and developed into shape grammar for procedural modeling. Third, procedural modeling is expected to be used as an alternative tool for communication and information delivery.

Development of Mobile Application for Ship Officers' Job Stress Measurement and Management (해기사 직무스트레스 측정 및 관리 모바일 애플리케이션 개발)

  • Yang, Dong-Bok;Kim, Joo-Sung;Kim, Deug-Bong
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.27 no.2
    • /
    • pp.266-274
    • /
    • 2021
  • Ship officers are subject to excessive job stress, which has negative physical and psychological impacts and may adversely affect the smooth supply and demand of human resources. In this study, a mobile web application was developed as a tool for systematic job stress measurement and management of officers and verified through quality evaluation. Requirement analysis was performed by ship officers and staff in charge of human resources of shipping companies, and the results were reflected in the application configuration step. The application was designed according to the waterfall model, which is a traditional software development method, and functions were implemented using JSP and Spring Framework. Performance evaluation on the user interface, confirmed that proper input and output results were implemented, and the respondent results and the database were configured in the administrator interface. The results of evaluation questionnaires for quality evaluation of the interface based on ISO/IEC 9126-2 metric were significant 4.60 for the user interface and 4.65 for the administrator interface in a 5-point scale. In the future, it is necessary to conduct follow-up research on the development of data analysis system through utilization of the collected big-data sets.

A Study on the Factors of Well-aging through Big Data Analysis : Focusing on Newspaper Articles (빅데이터 분석을 활용한 웰에이징 요인에 관한 연구 : 신문기사를 중심으로)

  • Lee, Chong Hyung;Kang, Kyung Hee;Kim, Yong Ha;Lim, Hyo Nam;Ku, Jin Hee;Kim, Kwang Hwan
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.22 no.5
    • /
    • pp.354-360
    • /
    • 2021
  • People hope to live a healthy and happy life achieving satisfaction by striking a good work-life balance. Therefore, there is a growing interest in well-aging which means living happily to a healthy old age without worry. This study identified important factors related to well-aging by analyzing news articles published in Korea. Using Python-based web crawling, 1,199 articles were collected on the news service of portal site Daum till November 2020, and 374 articles were selected which matched the subject of the study. The frequency analysis results of text mining showed keywords such as 'elderly', 'health', 'skin', 'well-aging', 'product', 'person', 'aging', 'female', 'domestic' and 'retirement' as important keywords. Besides, a social network analysis with 45 important keywords revealed strong connections in the order of 'skin-wrinkle', 'skin-aging' and 'old-health'. The result of the CONCOR analysis showed that 45 main keywords were composed of eight clusters of 'life and happiness', 'disease and death', 'nutrition and exercise', 'healing', 'health', and 'elderly services'.

Implement of Web-based Remote Monitoring System of Smart Greenhouse (스마트 온실 통합 모니터링 시스템 구축)

  • Dong Eok, Kim;Nou Bog, Park;Sun Jung, Hong;Dong Hyeon, Kang;Young Hoe, Woo;Jong Won, Lee;Yul Kyun, Ahn;Shin Hee, Han
    • Journal of Practical Agriculture & Fisheries Research
    • /
    • v.24 no.4
    • /
    • pp.53-61
    • /
    • 2022
  • Growing agricultural products in greenhouses controlled by creating suitable climatic conditions and root zone of crop has been an important research and application subject. Appropriate environmental conditions in greenhouse are necessary for optimum plant growth improved crop yields. This study aimed to establish web-based remote monitoring system which monitors crops growth environment and status of crop on a real-time basis by applying to greenhouses IT technology connecting greenhouse equipment such as temperature sensors, soil sensors, crop sensors and camera. The measuring items were air temperature, relative humidity, solar radiation, CO2 concentration, EC and pH of nutrient solution, medium temperature, EC of medium, water content of medium, leaf temperature, sap flow, stem diameter, fruit diameter, etc. The developed greenhouse monitoring system was composed of the network system, the data collecting device with sensors, and cameras. Remote monitoring system was implemented in a server/client environment. Information on greenhouse environment and crops is stored in a database. Items on growth and environment is extracted from stored information, could be compared and analyzed. So, A integrated monitoring system for smart greenhouse would be use in application practice and understanding the environment and crop growth for smart greenhouse management. sap flow, stem diameter and pant-water relations

Implementation of Air Pollutant Monitoring System using UAV with Automatic Navigation Flight

  • Shin, Sang-Hoon;Park, Myeong-Chul
    • Journal of the Korea Society of Computer and Information
    • /
    • v.27 no.8
    • /
    • pp.77-84
    • /
    • 2022
  • In this paper, we propose a system for monitoring air pollutants such as fine dust using an unmanned aerial vehicle capable of autonomous navigation. The existing air quality management system used a method of collecting information through a fixed sensor box or through a measurement sensor of a drone using a control device. This has disadvantages in that additional procedures for data collection and transmission must be performed in a limited space and for monitoring. In this paper, to overcome this problem, a GPS module for location information and a PMS7003 module for fine dust measurement are embedded in an unmanned aerial vehicle capable of autonomous navigation through flight information designation, and the collected information is stored in the SD module, and after the flight is completed, press the transmit button. It configures a system of one-stop structure that is stored in a remote database through a smartphone app connected via Bluetooth. In addition, an HTML5-based web monitoring page for real-time monitoring is configured and provided to interested users. The results of this study can be utilized in an environmental monitoring system through an unmanned aerial vehicle, and in the future, various pollutants measuring sensors such as sulfur dioxide and carbon dioxide will be added to develop it into a total environmental control system.

Design and Forensic Analysis of a Zero Trust Model for Amazon S3 (Amazon S3 제로 트러스트 모델 설계 및 포렌식 분석)

  • Kyeong-Hyun Cho;Jae-Han Cho;Hyeon-Woo Lee;Jiyeon Kim
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.33 no.2
    • /
    • pp.295-303
    • /
    • 2023
  • As the cloud computing market grows, a variety of cloud services are now reliably delivered. Administrative agencies and public institutions of South Korea are transferring all their information systems to cloud systems. It is essential to develop security solutions in advance in order to safely operate cloud services, as protecting cloud services from misuse and malicious access by insiders and outsiders over the Internet is challenging. In this paper, we propose a zero trust model for cloud storage services that store sensitive data. We then verify the effectiveness of the proposed model by operating a cloud storage service. Memory, web, and network forensics are also performed to track access and usage of cloud users depending on the adoption of the zero trust model. As a cloud storage service, we use Amazon S3(Simple Storage Service) and deploy zero trust techniques such as access control lists and key management systems. In order to consider the different types of access to S3, furthermore, we generate service requests inside and outside AWS(Amazon Web Services) and then analyze the results of the zero trust techniques depending on the location of the service request.

Oil Spill Monitoring in Norilsk, Russia Using Google Earth Engine and Sentinel-2 Data (Google Earth Engine과 Sentinel-2 위성자료를 이용한 러시아 노릴스크 지역의 기름 유출 모니터링)

  • Minju Kim;Chang-Uk Hyun
    • Korean Journal of Remote Sensing
    • /
    • v.39 no.3
    • /
    • pp.311-323
    • /
    • 2023
  • Oil spill accidents can cause various environmental issues, so it is important to quickly assess the extent and changes in the area and location of the spilled oil. In the case of oil spill detection using satellite imagery, it is possible to detect a wide range of oil spill areas by utilizing the information collected from various sensors equipped on the satellite. Previous studies have analyzed the reflectance of oil at specific wavelengths and have developed an oil spill index using bands within the specific wavelength ranges. When analyzing multiple images before and after an oil spill for monitoring purposes, a significant amount of time and computing resources are consumed due to the large volume of data. By utilizing Google Earth Engine, which allows for the analysis of large volumes of satellite imagery through a web browser, it is possible to efficiently detect oil spills. In this study, we evaluated the applicability of four types of oil spill indices in the area of various land cover using Sentinel-2 MultiSpectral Instrument data and the cloud-based Google Earth Engine platform. We assessed the separability of oil spill areas by comparing the index values for different land covers. The results of this study demonstrated the efficient utilization of Google Earth Engine in oil spill detection research and indicated that the use of oil spill index B ((B3+B4)/B2) and oil spill index C (R: B3/B2, G: (B3+B4)/B2, B: (B6+B7)/B5) can contribute to effective oil spill monitoring in other regions with complex land covers.

Development of crop harvest prediction system architecture using IoT Sensing (IoT Sensing을 이용한 농작물 수확 시기 예측 시스템 아키텍처 개발)

  • Oh, Jung Won;Kim, Hangkon
    • Asia-pacific Journal of Multimedia Services Convergent with Art, Humanities, and Sociology
    • /
    • v.7 no.6
    • /
    • pp.719-729
    • /
    • 2017
  • Recently, the field of agriculture has been gaining a new leap with the integration of ICT technology in agriculture. In particular, smart farms, which incorporate the Internet of Things (IoT) technology in agriculture, are in the spotlight. Smart farm technology collects and analyzes information such as temperature and humidity of the environment where crops are cultivated in real time using sensors to automatically control the devices necessary for harvesting crops in the control device, Environment. Although smart farm technology is paying attention as if it can solve everything, most of the research focuses only on increasing crop yields. This paper focuses on the development of a system architecture that can harvest high quality crops at the optimum stage rather than increase crop yields. In this paper, we have developed an architecture using apple trees as a sample and used the color information and weight information to predict the harvest time of apple trees. The simple board that collects color information and weight information and transmits it to the server side uses Arduino and adopts model-driven development (MDD) as development methodology. We have developed an architecture to provide services to PC users in the form of Web and to provide Smart Phone users with services in the form of hybrid apps. We also developed an architecture that uses beacon technology to provide orchestration information to users in real time.

Water intake and oral disease symptoms in adolescents : a cross-sectional study conducted in Korea in 2021 (우리나라 청소년의 수분 섭취에 따른 구강질환 증상 : 2021년 청소년온라인행태조사 자료를 이용한 단면연구)

  • So-Yeong Kim;Sun-A Lim
    • Journal of Korean society of Dental Hygiene
    • /
    • v.23 no.5
    • /
    • pp.343-350
    • /
    • 2023
  • Objectives: Water constitutes a majority of the human body and is essential for health. In addition, water intake can prevent dental caries by improving salivary lubrication and self-cleaning. This study aimed to determine the relationship between the amount of daily water intake and the symptoms of oral disease in Korean adolescents. Methods: We used data from the Korea Youth Risk Behavior Web-based Survey (KYRBS), conducted in Korea in 2021, and identified the relationship between daily water intake and oral disease symptoms in Korean adolescents. KYRBS is a nationwide cross-sectional survey conducted by the Korea Disease Control and Prevention Agency (KDCA), and a total of 54,848 participants were included in this study. Results: After adjusting for confounding factors, logistic regression analysis showed that tooth pain was more often experienced by those who drank less than two cups of water per day (odds ratio [OR]: 1.14; 95% confidence interval [CI]: 1.01-1.30) than those who drank five or more cups of water per day. Conclusions: A low daily water intake is associated with tooth pain, a symptom of dental caries. The results of our study suggest that increasing water intake may reduce dental caries. Therefore, adequate water intake may help prevent dental caries.

Analysis of Research Trends Related to drug Repositioning Based on Machine Learning (머신러닝 기반의 신약 재창출 관련 연구 동향 분석)

  • So Yeon Yoo;Gyoo Gun Lim
    • Information Systems Review
    • /
    • v.24 no.1
    • /
    • pp.21-37
    • /
    • 2022
  • Drug repositioning, one of the methods of developing new drugs, is a useful way to discover new indications by allowing drugs that have already been approved for use in people to be used for other purposes. Recently, with the development of machine learning technology, the case of analyzing vast amounts of biological information and using it to develop new drugs is increasing. The use of machine learning technology to drug repositioning will help quickly find effective treatments. Currently, the world is having a difficult time due to a new disease caused by coronavirus (COVID-19), a severe acute respiratory syndrome. Drug repositioning that repurposes drugsthat have already been clinically approved could be an alternative to therapeutics to treat COVID-19 patients. This study intends to examine research trends in the field of drug repositioning using machine learning techniques. In Pub Med, a total of 4,821 papers were collected with the keyword 'Drug Repositioning'using the web scraping technique. After data preprocessing, frequency analysis, LDA-based topic modeling, random forest classification analysis, and prediction performance evaluation were performed on 4,419 papers. Associated words were analyzed based on the Word2vec model, and after reducing the PCA dimension, K-Means clustered to generate labels, and then the structured organization of the literature was visualized using the t-SNE algorithm. Hierarchical clustering was applied to the LDA results and visualized as a heat map. This study identified the research topics related to drug repositioning, and presented a method to derive and visualize meaningful topics from a large amount of literature using a machine learning algorithm. It is expected that it will help to be used as basic data for establishing research or development strategies in the field of drug repositioning in the future.