• Title/Summary/Keyword: 웨이블릿 변환 분석

Search Result 177, Processing Time 0.025 seconds

Image Interpolation Using Hidden Markov Tree Model Without Training in Wavelet Domain (웨이블릿 영역에서 훈련 없는 은닉 마코프 트리 모델을 이용한 영상 보간)

  • 우동헌;엄일규;김유신
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.41 no.4
    • /
    • pp.31-37
    • /
    • 2004
  • Wavelet transform is a useful tool for analysis and process of image. This showed good performance in image compression and noise reduction. Wavelet coefficients can be effectively modeled by hidden Markov tree(HMT) model. However, in application of HMT model to image interpolation, training procedure is needed. Moreover, the parameters obtained from training procedure do not match input image well. In this paper, the structure of HMT is used for image interpolation, and the parameters of HMT are obtained from statistical characteristics across wavelet subbands without training procedure. In the proposed method, wavelet coefficient is modeled as Gaussian mixture model(GMM). In GMM, state transition probabilities are determined from statistical transition characteristic of coefficient across subbands, and the variance of each state is estimated using the property of exponential decay of wavelet coefficient. In simulation, the proposed method shows improvement of performance compared with conventional bicubic method and the method using HMT model with training.

A Study on Blind Watermarking Technique of Digital Image using 2-Dimensional Empirical Mode Decomposition in Wavelet Domain (웨이블릿 평면에서의 2D-EMD를 이용한 디지털 영상의 블라인드 워터마킹 기술에 관한 연구)

  • Lee, Young-Seock;Kim, Jong-Weon
    • Journal of Internet Computing and Services
    • /
    • v.11 no.2
    • /
    • pp.99-107
    • /
    • 2010
  • In this paper a blind watermarking algorithm for digital image is presented. The proposed method operates in wavelet domain. The watermark is decomposed into 2D-IMFs using BEMD which is the 2-dimensional extension of 1 dimensional empirical mode decomposition. The CDMA based on SS technique is applied to watermark embedding and detection process. In the watermark embedding process, each IMF of watermark is embedded into middle frequency subimages in wavelet domain, so subimages just include partial information about embedded watermark. By characteristics of BEMD, when the partial information of watermark is synthesized, the original watermark is reconstructed. The experimental results show that the proposed watermarking algorithm is imperceptible and moreover is robust against JPEG compression, common image processing distortions.

A Time-Frequency Analysis of the EEG for Yes/No response III (긍/부정 문답 관련 뇌파에 대한 시간-주파수 분석 III)

  • 남승훈;류창수;신승철;임태규;송윤선
    • Proceedings of the Korean Society for Emotion and Sensibility Conference
    • /
    • 2002.05a
    • /
    • pp.286-290
    • /
    • 2002
  • 두뇌-컴퓨터 인터페이스(brain-computer interface)를 적용하기 위한 연구로서 주어진 문제에서 긍/부정을 선택할 때 나타나는 뇌파를 분별하기 위해서 시간-주파수 분석을 하였다. 단시간 퓨리에 변환(short time fourier transform : STFT)을 하여 긍/부정 선택시 뇌파의 시간-주파수 변화량을 보고, 시간-주파수 분해능이 좋은 웨이블릿 변환(wavelet transform)을 적용하여 서로 비교하였다. 두 가지 분석에서 공통된 결과는 주로 RT전 0.5초 주위에서 유의미한 결과를 나타내었고, 웨이블릿 분석에서 더 좁은 구간에 나타나며, 통계적으로 더 유의미한 결과를 나타내었다.

  • PDF

Implementation of State-of-charge(SOC) Estimation using Denoising Technique based on the Discrete Wavelet Transform(DWT) (이산 웨이블릿 변환의 디노이징 기법을 적용한 이차전지 SOC 추정알고리즘 구현)

  • Kim, J.H.
    • Proceedings of the KIPE Conference
    • /
    • 2014.07a
    • /
    • pp.150-151
    • /
    • 2014
  • 높은 SOC(state-of-charge) 추정알고리즘의 성능을 위해서는 측정된 배터리 단자전압의 정확도가 요구된다. 그렇지만, 예기치 않은 에러로 인해 단자전압에 노이즈 성분이 추가될 경우 SOC 추정성능의 저하를 피할 수 없다. 그러므로, 본 논문에서는 이산 웨이블릿 변환(DWT;discrete wavelet transform)의 다해상도 분석(MRA;multi resolution analysis)의 디노이징(denoising)기법을 적용한 이차전지의 SOC 추정방법을 소개한다. MRA의 시간-주파수 분석을 통해 분해(decomposition)된 저주파 성분(approximation;$A_n$)과 고주파 성분(detail;$D_n$)중 노이즈에 관계된 $D_n$의 고주파 상세 계수(detail coefficient) $d_{j,k}$를 새로이 조정하고 이를 합성(synthesis)하여 디노이징을 마무리 한다. 확장 칼만필터(EKF;extended Kalman filter)의 비교 분석을 통해 제안된 방법의 타당성을 검증한다.

  • PDF

A Comparative Analysis of Denoising Performance based on the Mother Wavelet of the Discrete Wavelet Transform(DWT) (이산 웨이블릿 변환(DWT)의 모함수에 따른 배터리 전압의 노이즈 제거 성능 비교 분석)

  • Yoon, C.O.;Kim, J.H.
    • Proceedings of the KIPE Conference
    • /
    • 2015.07a
    • /
    • pp.463-464
    • /
    • 2015
  • 이산 웨이블릿 변환(DWT;discrete wavelet transform)의 다해상도 분석(MRA;multi resolution analysis)을 효율적으로 수행하기 위해서는 적절한 모함수(mother wavelet)의 선택이 필수적이다. 본 논문에서는, 노이즈가 포함된 충방전 전압의 디노이징(denoising)을 구현할 때, 모함수에 따른 디노이징 성능을 비교 및 분석한다. 고정된 MRA 레벨에서 6개의 모함수를 비교하되, 각 모함수에서 최대 SNR(signal-to-noise ratio)을 가지는 타입을 대푯값으로 정하여 모함수에 따른 디노이징 성능을 비교한다. 이를 위해, 하드 임계화(hard-thresholding) 및 소프트 임계화(soft-thresholding) 기법을 적용한다.

  • PDF

A Hybrid System of Wavelet Transformations and Neural Networks Using Genetic Algorithms: Applying to Chaotic Financial Markets (유전자알고리즘을 이용한 웨이블릿분석 및 인공신경망기법의 통합모형구축)

  • Shin, Taeksoo;Han, Ingoo
    • Proceedings of the Korea Database Society Conference
    • /
    • 1999.06a
    • /
    • pp.271-280
    • /
    • 1999
  • 인공신경망을 시계열예측에 적용하는 경우에 고려되어야 할 문제중, 특히 모형에 적합한 입력변수의 생성이 중요시되고 있는데, 이러한 분야는 인공신경망의 모형생성과정에서 입력변수에 대한 전처리기법으로써 다양하게 제시되어 왔다. 가장 최근의 입력변수 전처리기법으로써 제시되고 있는 신호처리기법은 전통적 주기분할처리방법인 푸리에변환기법(Fourier transforms)을 비롯하여 이를 확장시킨 개념인 웨이블릿변환기법(wavelet transforms) 등으로 대별될 수 있다. 이는 기본적으로 시계열이 다수의 주기(cycle)들로 구성된 상이한 시계열들의 집합이라는 가정에서 출발하고 있다. 전통적으로 이러한 시계열은 전기 또는 전자공학에서 주파수영역분할, 즉 고주파 및 저주파수를 분할하기 위한 기법에 적용되어 왔다. 그러나, 최근에는 이러한 연구가 다양한 분야에 활발하게 응용되기 시작하였으며, 그 중의 대표적인 예가 바로 경영분야의 재무시계열에 대한 분석이다 전통적으로 재무시계열은 장, 단기의사결정을 가진 시장참여자들간의 거래특성이 시계열에 각기 달리 가격으로 반영되기 때문에 이러한 상이한 집단들의 고유한 거래움직임으로 말미암아 예를 들어, 주식시장이 프랙탈구조를 가지고 있다고 보기도 한다. 이처럼 재무시계열은 다양한 사회현상의 집합체라고 볼 수 있으며, 그만큼 예측모형을 구축하는데 어려움이 따른다. 본 연구는 이러한 시계열의 주기적 특성에 기반을 둔 신호처리분석으로서 기존의 시계열로부터 노이즈를 줄여 주면서 보다 의미 있는 정보로 변환시켜 줄 수 있는 웨이블릿분석 방법론을 새로운 필터링기법으로 사용하여 현재 많은 연구가 진행되고 있는 인공신경망과의 모형결합을 통해 기존연구와는 다른 새로운 통합예측방법론을 제시하고자 한다. 본 연구에서 제시하는 통합방법론은 크게 2단계 과정을 거쳐 예측모형으로 완성이 된다. 즉, 1차 모형단계에서 원시 재무시계열은 먼저 웨이블릿분석을 통해서 노이즈가 필터링 되는 동시에, 과거 재무시계열의 프랙탈 구조, 즉 비선형적인 움직임을 보다 잘 반영시켜 주는 다차원 주기요소를 가지는 시계열로 분해, 생성되며, 이렇게 주기에 따라 장단기로 분할된 시계열들은 2차 모형단계에서 신경망의 새로운 입력변수로서 사용되어 최종적인 인공 신경망모델을 구축하는 데 반영된다.

  • PDF

Discrete Wavelet Transform-based SOH Prediction using the Voltage Deviation among the Cells of Li-Ion Battery Pack (배터리 팩의 셀간 전압편차를 이용한 이산 웨이블릿 변환(DWT) 기반 SOH 예측방법)

  • Kim, J.H.;Kim, W.J.;Park, J.H.;Park, J.P.
    • Proceedings of the KIPE Conference
    • /
    • 2012.11a
    • /
    • pp.149-150
    • /
    • 2012
  • 본 논문에서는 배터리 팩을 구성하는 셀간의 전압편차를 이용한 이산 웨이블릿 변환(DWT;discrete wavelet transform) 기반 SOH(State-of-health) 예측방법을 소개한다. 충방전 전압은 DWT의 다해상도 분석(MRA;multi-resolution analysis)을 이용한 시간-주파수 분석을 통해 고주파 전압 성분(detail;$D_n$)과 저주파 전압 성분(approximation;$A_n$)으로 추가 분해되어 SOH 예측을 위한 추가정보를 제공한다. 각 성분의 통계처리(표준편차)를 통해 노화 이전과 이후의 성분값을 비교한다. 즉 프레시 배터리팩과 노화된 팩의 표준편차 기반 셀간 불균형을 서로 비교하여 SOH 예측이 가능하다.

  • PDF

Discrete Wavelet Transform-based Fault Detection of Energy Storage System (이산 웨이블릿 변환 기반 에너지 저장시스템(ESS)의 고장 검출 방법)

  • Kim, J.H.;Kim, W.J.;Park, J.P.
    • Proceedings of the KIPE Conference
    • /
    • 2013.07a
    • /
    • pp.449-450
    • /
    • 2013
  • 본 논문에서는 이산 웨이블릿 변환(DWT;discrete wavelet transform)을 이용한 에너지 저장시스템(ESS;energy storage system)의 고장 검출 방법을 제안한다. ESS에 순간적인 고장 발생시 전압의 급격한 변화가 발생할 수 있으며 이는 다해상도 분석(MRA;multi-resolution analysis)을 이용한 시간-주파수 분석을 통해 분해된 저주파 전압 성분(approximation;$A_n$)과 고주파 전압 성분(detail;$D_n$)중 현저한 성분의 변화가 관찰되는 고주파 전압 성분을 선택한다. 이를 검증하기 위하여 모든 고주파 전압 성분의 절대값을 적용한 뒤 최대값 정보를 추출한다. 이 때, 추출된 각 성분의 최대값과 최대값의 평균을 비교하되 여러 사전실험을 통해 정해진 특정 임계값 대비 큰 값을 나타낼 때 고장이 발생하였음을 판단한다.

  • PDF

Level Selection of the Multi-Resolution Analysis(MRA) for Optimum Denoising Performance of the Discrete Wavelet Transform(DWT) (이산 웨이블릿 변환(DWT)의 디노이징 최적 성능을 위한 다해상도 분석의 레벨 선택 연구)

  • Whang, J.Y.;Kim, J.H.
    • Proceedings of the KIPE Conference
    • /
    • 2015.07a
    • /
    • pp.465-466
    • /
    • 2015
  • 배터리 관리시스템(BMS;battery management system)의 중요 고려요소인 SOC(state-of-charge) 및 SOH(state-of-health)의 전기적 등가회로 모델 기반 고성능 추정의 전제 조건은 배터리 단자전압의 안정된 실험데이터 확보이다. 그러나, 예상치 않은 에러로 인해 배터리 단자전압에 노이즈 성분이 포함될 경우 SOC 및 SOH 추정알고리즘의 성능저하가 우려된다. 이를 위해, 본 논문은 이산 웨이블릿 변환(DWT;discrete wavelet transform)의 다해상도 분석(MRA;multi resolution analysis) 레벨에 따른 디노이징 최적 성능을 소개하고자 한다. 하드 임계화(hard-thresholding) 및 소프트 임계화(soft-thresholding) 기법에 따른 디노이징 성능 차이를 보이고, 각 임계화 기법 적용 시 디노이징 최적 성능을 보이는 레벨을 선택한다.

  • PDF

Research on Classification of Human Emotions Using EEG Signal (뇌파신호를 이용한 감정분류 연구)

  • Zubair, Muhammad;Kim, Jinsul;Yoon, Changwoo
    • Journal of Digital Contents Society
    • /
    • v.19 no.4
    • /
    • pp.821-827
    • /
    • 2018
  • Affective computing has gained increasing interest in the recent years with the development of potential applications in Human computer interaction (HCI) and healthcare. Although momentous research has been done on human emotion recognition, however, in comparison to speech and facial expression less attention has been paid to physiological signals. In this paper, Electroencephalogram (EEG) signals from different brain regions were investigated using modified wavelet energy features. For minimization of redundancy and maximization of relevancy among features, mRMR algorithm was deployed significantly. EEG recordings of a publically available "DEAP" database have been used to classify four classes of emotions with Multi class Support Vector Machine. The proposed approach shows significant performance compared to existing algorithms.