• Title/Summary/Keyword: 웨이브렛

Search Result 559, Processing Time 0.02 seconds

Tunable Q-factor 2-D Discrete Wavelet Transformation Filter Design And Performance Analysis (Q인자 조절 가능 2차원 이산 웨이브렛 변환 필터의 설계와 성능분석)

  • Shin, Jonghong
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.11 no.1
    • /
    • pp.171-182
    • /
    • 2015
  • The general wavelet transform has profitable property in non-stationary signal analysis specially. The tunable Q-factor wavelet transform is a fully-discrete wavelet transform for which the Q-factor Q and the asymptotic redundancy r, of the transform are easily and independently specified. In particular, the specified parameters Q and r can be real-valued. Therefore, by tuning Q, the oscillatory behavior of the wavelet can be chosen to match the oscillatory behavior of the signal of interest, so as to enhance the sparsity of a sparse signal representation. The TQWT is well suited to fast algorithms for sparsity-based inverse problems because it is a Parseval frame, easily invertible, and can be efficiently implemented. The transform is based on a real valued scaling factor and is implemented using a perfect reconstruction over-sampled filter bank with real-valued sampling factors. The transform is parameterized by its Q-factor and its over-sampling rate, with modest over-sampling rates being sufficient for the analysis/synthesis functions to be well localized. This paper describes filter design of 2D discrete-time wavelet transform for which the Q-factor is easily specified. With the advantage of this transform, perfect reconstruction filter design and implementation for performance improvement are focused in this paper. Hence, the 2D transform can be tuned according to the oscillatory behavior of the image signal to which it is applied. Therefore, application for performance improvement in multimedia communication field was evaluated.

Quincunx Sampling Method For Improvement of Double-Density Wavelet Transformation (이중 밀도 웨이브렛 변환의 성능 향상을 위한 Quincunx 표본화 기법)

  • Lim, Joong Hee;Shin, Jong Hong
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.8 no.1
    • /
    • pp.171-181
    • /
    • 2012
  • This paper introduces the double-density discrete wavelet transform(DWT) using quincunx sampling, which is a DWT that combines the double-density DWT and quincunx sampling method, each of which has its own characteristics and advantages. The double-density DWT is an improvement upon the critically sampled DWT with important additional properties: Firstly, It employs one scaling function and two distinct wavelets, which are designed to be offset from one another by one half. Secondly, the double-density DWT is overcomplete by a factor of two, and Finally, it is nearly shift-invariant. In two dimensions, this transform outperforms the standard DWT in terms of denoising; however, there is room for improvement because not all of the wavelets are directional. That is, although the double-density DWT utilizes more wavelets, some lack a dominant spatial orientation, which prevents them from being able to isolate those directions. A solution to this problem is a quincunx sampling method. The quincunx lattice is a sampling method in image processing. It treats the different directions more homogeneously than the separable two dimensional schemes. Proposed wavelet transformation can generate sub-images of multiple degrees rotated versions. Therefore, This method services good performance in image processing fields.

Digital Image Processing Using Tunable Q-factor Discrete Wavelet Transformation (Q 인자의 조절이 가능한 이산 웨이브렛 변환을 이용한 디지털 영상처리)

  • Shin, Jong Hong
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.10 no.3
    • /
    • pp.237-247
    • /
    • 2014
  • This paper describes a 2D discrete-time wavelet transform for which the Q-factor is easily specified. Hence, the transform can be tuned according to the oscillatory behavior of the image signal to which it is applied. The tunable Q-factor wavelet transform (TQWT) is a fully-discrete wavelet transform for which the Q-factor, Q, of the underlying wavelet and the asymptotic redundancy (over-sampling rate), r, of the transform are easily and independently specified. In particular, the specified parameters Q and r can be real-valued. Therefore, by tuning Q, the oscillatory behavior of the wavelet can be chosen to match the oscillatory behavior of the signal of interest, so as to enhance the sparsity of a sparse signal representation. The TQWT is well suited to fast algorithms for sparsity-based inverse problems because it is a Parseval frame, easily invertible, and can be efficiently implemented. The TQWT can also be used as an easily-invertible discrete approximation of the continuous wavelet transform. The transform is based on a real valued scaling factor (dilation-factor) and is implemented using a perfect reconstruction over-sampled filter bank with real-valued sampling factors. The transform is parameterized by its Q-factor and its oversampling rate (redundancy), with modest oversampling rates (e. g. 3-4 times overcomplete) being sufficient for the analysis/synthesis functions to be well localized. Therefore, This method services good performance in image processing fields.

One-dimensional and Image Signal Denoising Using an Adaptive Wavelet Shrinkage Filter (적응적 웨이블렛 수축 필터를 이용한 일차원 및 영상 신호의 잡음 제거)

  • Lim, Hyun;Park, Soon-Young;Oh, Il-Whan
    • The Journal of the Acoustical Society of Korea
    • /
    • v.19 no.4
    • /
    • pp.3-15
    • /
    • 2000
  • In this paper we present a new image denoising filter that can suppress additive noise components while preserving signal components in the wavelet domain. The proposed filter, which we call an adaptive wavelet shrinkage(AWS) filter, is composed of two operators: the wavelet killing operator and the adaptive shrinkage operator. Each operator is selected based on the threshold value which is estimated adaptively by using the local statistics of the wavelet coefficients. In the wavelet killing operation, the small wavelet coefficients below the threshold value are replaced by zero to suppress noise components in the wavelet domain. The adaptive shrinkage operator attenuates noise components from the wavelet components above the threshold value adaptively. The experimental results show that the proposed filter is more effective than the other methods in preserving signal components while suppressing noise.

  • PDF

Enhanced Image Compression based on Wavelet using Variable Threshold and Zerotree Structure Scanning (가변 문턱 값과 대역별 제로트리 스캔에 의한 웨이브릿 정지 영상 압축 기법의 개선)

  • 최정구;김도년;조동섭
    • Journal of Korea Multimedia Society
    • /
    • v.4 no.6
    • /
    • pp.500-509
    • /
    • 2001
  • Image compression based on Wavelet gives much better quality than JPEG based on DCT, but suffers from ringing or blurring effects around edges as the compression is increased. In this paper, we proposed enhanced image compression by pre-processing wavelet coefficients. This pre-processing is performed by making a low threshold and enhanced by zerotree scan method when subband's zerotrees are established. It might increase significants coefficient by means of modifying the threshold and reflect on the orientation of subbands. Some experimental results show our method is more efficient than the conventional methods, JPEG. And then the developed coding scheme improves the quality of images and visually shows more pleasing results for most practical images.

  • PDF

A Study on Enhancing Ship`s Radar Detecting Efficiency by Wavelet and Morphology Median Filter (Wavelet과 Morphology Median 필터를 이용한 선박용 Radar 탐지 효율 향상을 위한 연구)

  • Jeong, Gi-Ryong
    • Journal of Navigation and Port Research
    • /
    • v.26 no.1
    • /
    • pp.28-34
    • /
    • 2002
  • Irregular reflected signals on a sea surface make clutters to a ship's radar image. Clutters are similar to Gaussian white noises which are very harmful for detecting objecting at sea by a ship's radar. To remove the clutter effects, many papers show the algorithms by antenna, filters, and so on. This paper shows a new algorithm which uwes Wavelet and Morphology median filter conceps for removing clutter and enhancing image in order to detect well a distressed of being rescued ship in a rough weather condition at sea.

Biometric Image Cryptographic Algorithm Based on the Property of Wavelet Transform Coefficient (웨이브렛 변환 계수의 특성을 이용한 생체 영상 암호화 알고리즘)

  • Shin, Jonghong
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.12 no.2
    • /
    • pp.41-49
    • /
    • 2016
  • Lossless encryption methods are more applicable than lossy encryption methods when marginal distortion is not tolerable. In this research, the author propose a novel lossless symmetric key encryption/decryption technique. In the proposed algorithm, the image is transformed into the frequency domain using the lifting wavelet transform, then the image sub-bands are encrypted in a such way that guarantees a secure, reliable, and an unbreakable form. The encryption involves scattering the distinguishable frequency data in the image using a reversible weighting factor amongst the rest of the frequencies. The algorithm is designed to shuffle and reverse the sign of each frequency in the transformed image before the image frequencies are transformed back to the pixel domain. The results show a total deviation in pixel values between the original and encrypted image. The decryption algorithm reverses the encryption process and restores the image to its original form. The proposed algorithm is evaluated using standard security and statistical methods; results show that the proposed work is resistant to most known attacks and more secure than other algorithms in the cryptography domain.

The Three Directional Separable Processing Method for Double-Density Wavelet Transformation Improvement (이중 밀도 웨이브렛 변환의 성능 향상을 위한 3방향 분리 처리 기법)

  • Shin, Jong Hong
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.8 no.2
    • /
    • pp.131-143
    • /
    • 2012
  • This paper introduces the double-density discrete wavelet transform using 3 direction separable processing method, which is a discrete wavelet transform that combines the double-density discrete wavelet transform and quincunx sampling method, each of which has its own characteristics and advantages. The double-density discrete wavelet transform is nearly shift-invariant. But there is room for improvement because not all of the wavelets are directional. That is, although the double-density DWT utilizes more wavelets, some lack a dominant spatial orientation, which prevents them from being able to isolate those directions. The dual-tree discrete wavelet transform has a more computationally efficient approach to shift invariance. Also, the dual-tree discrete wavelet transform gives much better directional selectivity when filtering multidimensional signals. But this transformation has more cost complexity Because it needs eight digital filters. Therefor, we need to hybrid transform which has the more directional selection and the lower cost complexity. A solution to this problem is a the double-density discrete wavelet transform using 3 direction separable processing method. The proposed wavelet transformation services good performance in image and video processing fields.

Application of Time-Frequency Analysis Methods to Loose Part Impact Signal (금속파편 감시 시스템에 대한 시간-주파수 해석 적용 연구)

  • 박진호;이정한;김봉수;박기용
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2003.11a
    • /
    • pp.361-364
    • /
    • 2003
  • The safe operation and reliable maintenance of nuclear power plants is one of the most fundamental and important tasks. It is known that a loose part such as a disengaged and drifting metal inside of reactor coolant systems might lead to a serious damage because of their impact on the components of the coolant system. In order to estimate the impact position of a loose par, three accelerometers attached to the wall of the coolant system have been used. These accelerometers measure the vibration of the coolant system induced by loose part impact. In the conventional analysis system, the low pass filtered version of the vibration data was used for the estimation of the position of a loose part. It is often difficult to identify the initial point of the impact signal by using just a low passed time signal because the impact wave is dispersed during propagation into the sensor. In this paper, the impact signal is analysed by use of various time frequency methods including the short time Fourier transform(STFT), the wavelet transform, and the Wigner-Vill distribution for finding a convenient way to identify the starting point of a impact signal and their advantages and limits are discussed.

  • PDF

Characteristics of noise cancellation for MCG signals using wavelet packets (웨이브렛 패킷을 이용한 심자도 신호의 잡음 제거 특성)

  • 박희준;김용주;정주영;원철호;김인선;조진호
    • Progress in Superconductivity
    • /
    • v.4 no.1
    • /
    • pp.53-58
    • /
    • 2002
  • Noise from electronic instrumentation is invariably present in biomedical signals, although the art of instrumentation design is such that this noise source may be negligible. And sometimes signals of interest are contaminated or degraded by signals of similar type from another source. Biomedical signals are omni-presently contaminated by these background noises that span nearly all frequency bandwidths. In the magneto-cardiogram (MCG), several digital filters have been designed for the elimination of the power-line interference, broadband white noise, surrounding magnetic noise, and baseline wondering. In addition to the introduced FIR filter, notch, adaptive filter using the least mean square (LMS) algorithm, and recurrent neural network (RNN) filter, a new filtering method for effective noise canceling in MCG signals is proposed in this paper, which is realized by the wavelet packets. The experimental results show that the proposed filter using wavelet packet performs efficiently with respect to noise rejection. To verify this, two characteristics were analyzed and compared with LMS adaptive filter, SNR of filtered signal and attractor pattern using the nonlinear dynamics.

  • PDF