• Title/Summary/Keyword: 웨어러블 컴퓨팅

Search Result 81, Processing Time 0.031 seconds

Life Weather Index Monitoring System using Wearable based Smart Cap (웨어러블 기반의 스마트 모자를 이용한 생활기상지수 모니터링 시스템)

  • Jun, In-Ja;Chung, Kyung-Yong
    • The Journal of the Korea Contents Association
    • /
    • v.9 no.12
    • /
    • pp.477-484
    • /
    • 2009
  • It is important for the strategy of service to provide the weather information in the environment that the smart clothing has been changed focusing on the consumer center. Recently, the various applications of smart clothing concept have been presented by researchers and developers. Among them, the smart clothing based on the sensors is most likely to gain the highest demand rate in the market. In this paper, we proposed the life weather index monitoring system using the wearable based smart cap. By wearing the proposed smart cap, the weather status is gathered and its signals are transmitted to the connected UMPC. It can be easily monitored in real time. To provide the life weather index according to the sensors, the weather index was analyzed in terms of 6 factors, such as, the heat index, the food poisoning index, the discomfort index, the ultraviolet index, the water pipe freeze possibility index, and the windchill temperature index. Ultimately, this paper suggests empirical application to verify the adequacy and the validity with the life weather index monitoring system. Accordingly, the satisfaction and the quality of services will be improved the smart clothing.

Correlation between Visual Sensibility and Vital Signal using Wearable based Electrocardiogram Sensing Clothes (웨어러블 기반의 심전도 측정 의복을 이용한 시각감성과 생체신호간의 상관관계)

  • Chung, Kyung-Yong
    • The Journal of the Korea Contents Association
    • /
    • v.9 no.12
    • /
    • pp.496-503
    • /
    • 2009
  • In the life environment changed with not only the material abundance but also the quality, it is the most crucial factor for the strategy of sensibility engineering to investigate vital signal according to the sensibility. In this perspective, it is necessary to design and merchandise the products in cope with each sensibility and needs as well as its functional aspects. In this paper, we proposed the correlation between the visual sensibility and the vital signal using the wearable based electrocardiogram sensing clothes. We measured the electrocardiogram (ECG) signal by wearing the electrocardiogram sensing clothes. The heart rate variability (HRV) is calculated form the acquired ECG signal by wearing the electrocardiogram sensing clothes. And the power spectrum analysis using the Fast Fourier Transform (FFT) is evaluated the correlation between the visual sensibility and the vital signal. we plan to conduct empirical applications to verify the adequacy and the validity of the proposed method.

A Mobile Tour Guide System using Wearable See-through Device and Hand-held Device based on Shared Touring Context (여행자 상황 정보 기반 안경형 웨어러블 디바이스 및 핸드헬드 디바이스 투어 가이드 시스템)

  • Kim, Doyeon;Seo, Daeil;Yoo, Byounghyun;Ko, Heedong
    • Journal of the HCI Society of Korea
    • /
    • v.11 no.1
    • /
    • pp.29-38
    • /
    • 2016
  • Mobile tour guide applications help tourists to search for and visit their surrounding POIs(Points of Interest) of their locations and to obtain their guide information. With the development of wearable devices like smart watches and wearable glasses, people using multiple mobile devices are increasing; a tourist may use a hand-held device, a wearable device or both to obtain tour information. However, most mobile tour guides using mobile devices provide the tour information with little consideration of their hand-held and wearable characteristics. In particular, a tourist with multiple mobile devices who search for the tour information from multiple mobile devices must input their intention separately to each device. To alleviate these problems, we propose a mobile tour guide system with the following features: one is to reduce redundant user input by sharing the touring context between hand-held and wearable devices; the other is to present tour information according to capabilities and usage pattern of the devices. The proposed system guides tourists by complementing disadvantage of the devices and also minimizes user interaction between applications and tourists.

American Sign Language Recognition System Using Wearable Sensors with Deep Learning Approach (딥러닝 방식의 웨어러블 센서를 사용한 미국식 수화 인식 시스템)

  • Chong, Teak-Wei;Kim, Beom-Joon
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.15 no.2
    • /
    • pp.291-298
    • /
    • 2020
  • Sign language was designed for the deaf and dumb people to allow them to communicate with others and connect to the society. However, sign language is uncommon to the rest of the society. The unresolved communication barrier had eventually isolated deaf and dumb people from the society. Hence, this study focused on design and implementation of a wearable sign language interpreter. 6 inertial measurement unit (IMU) were placed on back of hand palm and each fingertips to capture hand and finger movements and orientations. Total of 28 proposed word-based American Sign Language were collected during the experiment, while 156 features were extracted from the collected data for classification. With the used of the long short-term memory (LSTM) algorithm, this system achieved up to 99.89% of accuracy. The high accuracy system performance indicated that this proposed system has a great potential to serve the deaf and dumb communities and resolve the communication gap.

Design and Implementation of Electromyographic Sensor System for Wearable Computing (웨어러블 컴퓨팅을 위한 근전도 센서 시스템의 설계 및 구현)

  • Lee, Young-Seok
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.11 no.1
    • /
    • pp.114-120
    • /
    • 2018
  • In this paper we implemented an EMG sensor system for wearable devices to obtain and analyze of EMG signals. The performance of the implemented sensor system is evaluated by the correlation analysis of muscle fatigue and muscle activation to clinical EMG system and compared with power consumption of the measured power of our system and commercial systems. In experiments with biceps and triceps brachii of 5 objects, The correlation values of muscle fatigue and muscle activation between our system and the clinical EMG system is 1.1~1.4 and about 1.0, respectively. And also the power consumption of our system is 25~50% less than that of some commercial EMG sensor systems.

Application of Intelligent Wearable Computing (지능형 웨어러블 컴퓨팅의 응용)

  • Kim, Seong-Joo;Jung, Sung-Ho;Jeon, Hong-Tae
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.14 no.3
    • /
    • pp.304-309
    • /
    • 2004
  • This work proposes the wearable and intelligent system to control mobile vehicle instead of user. The system having the ability of assistance as well as portable can be applied to various controller. It is possible to observe the state of mobile vehicle and have a good command of robot instead of human. In this paper, the wearable system operating the mobile vehicle by deciding the velocity and rotation angle that are demanded for collision avoidance with the obtained driving information from mobile vehicle is implemented. To make the proposed wearable system have an intelligence, the hierarchical fuzzy logic and neural network are used.

ButtonKeyboard: A Button-shaped Keyboard Supporting Text entry for Wearable Devices (버튼 키보드: 웨어러블 기기에서 문자입력을 지원하는 단추형 키보드)

  • Kim, Hyun-Jung;Kim, Seok-Tae;Pak, Jin-Hee;Lee, Woo-Hun
    • 한국HCI학회:학술대회논문집
    • /
    • 2007.02b
    • /
    • pp.298-303
    • /
    • 2007
  • 웨어러블 컴퓨팅 환경에서 문자입력은 필수적인 태스크이나 적절한 유저 인터페이스를 지원하기란 쉽지 않다. 탁상용 QWERTY 키보드를 소형화하여 상용화한 제품도 있지만 일상에서 사용하기에는 상당히 부담스러운 크기이다. 본 연구는 단추와 유사한 크기로 부담 없이 의복에 부착할 수 있으며 적정 수준으로 문자입력 태스크를 지원할 수 있는 버튼 키보드를 제안한다. 버튼키보드는 기존 전화키패드의 $3{\times}3$ 키 배열을 단일 키 패드로 통합하였다. 이는 내구성 있고 간결한 폼팩터를 가능하게 하며 입력장치의 소형화와 문자입력효율의 향상을 가능하게 한다. 버튼키보드는 일반 키보드용 키에 터치센서와 LED 배열을 합성하여 구현하였다. 따라서 손가락의 위치에 따라 이격, 터치, 누름등의 상태를 구분할 수 있어 멀티탭핑방식에서 발생하는 입력분절문제를 해결하였으며 와이핑 모션에 의한 특수문자와 명령 입력을 가능하게 하였다. 프로토타입을 통해 문자입력수행도 테스트 결과 20세션 학습후 한손입력에 대해 평균 14.7WPM, 두손입력에 대해 평균 14.5WPM의 입력속도를 얻었다. 20세션 평균 에러율은 6%를 기록했으며 최고속도는 두손입력시 17WPM으로 나타났다. 실험결과를 통해 본 연구에서 제안한 버튼키보드가 기기를 극적으로 소형화하였음에도 불구하고 문자입력을 적정수준으로 수행할 수 있는 가능성을 가진 문자입력장치임을 확인할 수 있었다. 차후 프로토타입의 개선을 통하여 기기가 더욱 소형화될 수 있으며 문자입력수행도 또한 향상될 여지가 있다.

  • PDF

Design of Bio-Signal Analysis Architecture Applying Matlab Source (Matlab 소스를 적용한 생체신호 분석 시스템 개발)

  • Joo, Moon-Il;Choi, Seong-Hun;Kim, Hee-Cheol
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2017.10a
    • /
    • pp.65-67
    • /
    • 2017
  • Due to the development of mobile computing and wearable technology, various wearable devices for measuring bio-signals in everyday life have been developed and popularized, and healthcare services utilizing bio-signals are attracting attention. In recent years, healthcare services have been developed and studied using various bio-signal analysis tools. Most bio-signal analysis studies utilize Matlab. However, in order to apply the algorithm developed in Matlab to the system, it is necessary to convert the source. We want to provide a smart interface that can skip source conversion. In this paper, we develop an interface to run the source file itself in the system by omitting the conversion technique for applying the algorithm developed in Matlab to the system.

  • PDF

User Motion Recognition Healthcare System Using Smart-Band (스마트밴드를 이용한 사용자 모션인식 헬스 케어 시스템 구현)

  • Park, Jin-Tae;Hwang, Hyun-Seo;Yun, Jun-Soo;Park, Gyung-Soo;Moon, Il-Young
    • Journal of Advanced Navigation Technology
    • /
    • v.18 no.6
    • /
    • pp.619-624
    • /
    • 2014
  • Nowadays there are various smart devices and development with the development of smart phones and that can be attached to the human body wearable computing device has been in the spotlight. In this paper, we proceeded developing wearable devices in watch type which can detect user's movement and developing a system which connects the wearable devices to smart TVs, or smart phones so that users can save and manage their physical information in those devices. Health care wearable devices already existing save information by connecting their systems to smart phones. And, smart TV health applications usually include motion detecting systems using cameras. However, there is a limit when connecting smart phone systems to different devices from various companies. Also, in case of smart TV, because some devices may not have cameras, there can be a limit for users who wants to connect their devices to smart TVs. Wearable device and user information collected by using the smart phone and when it is possible to exercise and manage anywhere. This information can also be confirmed by the smart TV applications. By using this system will be able to take advantage of the study of the behavior of the future work of the user more accurately be measured in recognition technology and other devices.

빅 데이터기반 마이닝 마인즈 헬스케어 프레임워크

  • Banos, Oresti;Khan, Wajahat Ali;Amin, Muhammad Bilal;Heo, Tae-Ho;Bang, Jae-Hun;Gang, Dong-Uk;Hussain, Maqbool;Afzal, Muhammad;Ali, Taqdir;Lee, Seung-Ryong
    • Information and Communications Magazine
    • /
    • v.32 no.11
    • /
    • pp.12-20
    • /
    • 2015
  • 최근 의학 기술이 눈부시게 발전함에 따라 사람들은 수명이 연장되고 삶의 질 향상에 많은 관심을 가지게 되었다. 더욱이 혁신적인 디지털 기술 발전과 함께 다양한 웨어러블 기기와 수많은 헬스케어 어플리케이션이 출시되고 있으며, 이들은 어떻게 하면 개인의 성향이나 체질에 잘 맞는 맞춤형 (개인화) 서비스를 제공할 수 있을 것인가에 관심을 두고 진화하고 있다. 따라서 IoT 환경의 일상생활에서 입력되는 센서 데이터의 수집, 처리, 가공 기술, 일상 행위 및 라이프 스타일 인지, 지식 획득 및 관리 기술, 개인화 추천서비스 제공, 프라이버시 및 보안을 통합적으로 지원할 수 있는 프레임워크 개발에 대한 요구가 증대되고 있다. 이에 본 고에서는 저자가 개발중인 개인 맞춤 건강 및 웰니스 서비스를 제공하는 마이닝 마인즈 프레임워크를 소개한다. 마이닝 마인즈는 현존하는 최신 기술의 집약체로 개인화, 큐레이션, 빅 데이터 처리, 클라우드 컴퓨팅의 활용, 다양한 센서 정보의 수집과 분석, 진화형 지식의 생성과 관리, UI/UX를 통한 습관화 유도 등 다양한 요소를 포함한다. 그리고 건강 및 웰니스 프레임워크 요구사항 분석을 통해 마이닝 마인즈가 이러한 요구를 충족시킬 수 있으며, 개발된 프로토타입을 통해 개인화 서비스의 발전 가능성을 입증하고 향후 나아가야 할 방향을 제시한다.