• Title/Summary/Keyword: 웨어러블 전자기기

Search Result 56, Processing Time 0.031 seconds

A Study on the Output Performance of Solid-solid Triboelectric Energy Harvesting Depending on the Surface Morphology and Thickness of AAO (AAO 두께 및 표면 형상에 따른 고체-고체 마찰 대전 기반 에너지 하베스팅 발전 성능에 관한 연구)

  • Kwangseok Lee;Woonbong Hwang
    • Composites Research
    • /
    • v.36 no.3
    • /
    • pp.224-229
    • /
    • 2023
  • Due to the increasing demand for wearable devices and miniaturization of various electronic devices, the trend of nanofabrication in IT devices is underway. In order to overcome the limitations of battery size and capacity, there has been a lot of research interest in energy harvesting technology, also known as triboelectric nanogenerator. AAO(Anodic Aluminum oxide) coated with fluoride is a structure that includes an anode layer with high properties in the triboelectric series, an dielectric layer that helps transfer the triboelectrically generated charges to the electrode without loss, and the electrode. For these reasons, AAO has been a lot of research on its application to frictional energy harvesting nanogenerators. In this work, we analyzed the correlation of AAO between the surface morphology and thickness of the insulating layer by utilizing aluminum oxide, which is advantageous for the application of triboelectric nanogenerators, and adjusting the thickness of the insulating layer.

Recent Progress in Micro In-Mold Process Technologies and Their Applications (마이크로 인몰드 공정기술 기반 전자소자 제조 및 응용)

  • Sung Hyun Kim;Young Woo Kwon;Suck Won Hong
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.30 no.2
    • /
    • pp.1-12
    • /
    • 2023
  • In the current era of the global mobile smart device revolution, electronic devices are required in all spaces that people interact with. The establishment of the internet of things (IoT) among smart devices has been recognized as a crucial objective to advance towards creating a comfortable and sustainable future society. In-mold electronic (IME) processes have gained significant industrial significance due to their ability to utilize conventional high-volume methods, which involve printing functional inks on 2D substrates, thermoforming them into 3D shapes, and injection-molded, manufacturing low-cost, lightweight, and functional components or devices. In this article, we provide an overview of IME and its latest advances in application. We review biomimetic nanomaterials for constructing self-supporting biosensor electronic materials on the body, energy storage devices, self-powered devices, and bio-monitoring technology from the perspective of in-mold electronic devices. We anticipate that IME device technology will play a critical role in establishing a human-machine interface (HMI) by converging with the rapidly growing flexible printed electronics technology, which is an integral component of the fourth industrial revolution.

Sleep/Wake Dynamic Classifier based on Wearable Accelerometer Device Measurement (웨어러블 가속도 기기 측정에 의한 수면/비수면 동적 분류)

  • Park, Jaihyun;Kim, Daehun;Ku, Bonhwa;Ko, Hanseok
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.52 no.6
    • /
    • pp.126-134
    • /
    • 2015
  • A sleep disorder is being recognized as one of the major health issues related to high levels of stress. At the same time, interests about quality of sleep are rapidly increasing. However, diagnosing sleep disorder is not a simple task because patients should undergo polysomnography test, which requires a long time and high cost. To solve this problem, an accelerometer embedded wrist-worn device is being considered as a simple and low cost solution. However, conventional methods determine a state of user to "sleep" or "wake" according to whether values of individual section's accelerometer data exceed a certain threshold or not. As a result, a high miss-classification rate is observed due to user's intermittent movements while sleeping and tiny movements while awake. In this paper, we propose a novel method that resolves the above problems by employing a dynamic classifier which evaluates a similarity between the neighboring data scores obtained from SVM classifier. A performance of the proposed method is evaluated using 50 data sets and its superiority is verified by achieving 88.9% accuracy, 88.9% sensitivity, and 88.5% specificity.

Flexible Planar Heater Comprising Ag Thin Film on Polyurethane Substrate (폴리우레탄 유연 기판을 이용한 Ag 박막형 유연 면상발열체 연구)

  • Seongyeol Lee;Dooho Choi
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.31 no.1
    • /
    • pp.29-34
    • /
    • 2024
  • The heating element utilizing the Joule heating generated when current flows through a conductor is widely researched and developed for various industrial applications such as moisture removal in automotive windshield, high-speed train windows, and solar panels. Recently, research utilizing heating elements with various nanostructures has been actively conducted to develop flexible heating elements capable of maintaining stable heating even under mechanical deformation conditions. In this study, flexible polyurethane possessing excellent flexibility was selected as the substrate, and silver (Ag) thin films with low electrical resistivity (1.6 μΩ-cm) were fabricated as the heating layer using magnetron sputtering. The 2D heating structure of the Ag thin films demonstrated excellent heating reproducibility, reaching 95% of the target temperature within 20 seconds. Furthermore, excellent heating characteristics were maintained even under mechanically deforming environments, exhibiting outstanding flexibility with less than a 3% increase in electrical resistance observed in repetitive bending tests (10,000 cycles, based on a curvature radius of 5 mm). This demonstrates that polyurethane/Ag planar heating structure bears promising potential as a flexible/wearable heating element for curved-shaped appliances and objects subjected to diverse stresses such as human body parts.

텔레바이오인식기반 비대면 인증기술 표준화 동향

  • Kim, Jason;Lee, Sung Jae;Kim, Byoungsub;Lee, Sang-Woo
    • Review of KIISC
    • /
    • v.25 no.4
    • /
    • pp.43-50
    • /
    • 2015
  • 바이오인식기술은 사람의 지문 얼굴 홍채 정맥 등 신체적 특징(Physiological characteristics) 또는 음성 서명 자판 걸음걸이 등 행동적 특징(Behavioral characteristics)을 자동화된 IT 기술로 추출 저장하여 다양한 IT 기기로 개인의 신원을 확인하는 사용자 인증기술이다. 2001년 미국의 911 테러사건으로 인하여 전 세계 국제공항 항만 국경에서 지문 얼굴 홍채 등 바이오정보를 이용한 출입국심사가 보편화됨과 동시에 ISO/IEC JTC1 SC37(바이오인식) 국제표준화기구를 중심으로 표준화가 급속도로 진행되어 왔다. 최근 들어 스마트폰 테블릿 PC 등 모바일기기에 지문 얼굴 등 바이오정보를 탑재하여 다양한 모바일 응용서비스를 가능하게 해주는 모바일 바이오인식 응용기술이 전 세계적으로 개발 보급되고, 삼성전자 페이팔 중심으로 바이오인식기술을 이용한 모바일 지급결제솔루션에 대한 사실표준화협의체인 FIDO, ITU-T SG17 Q9(텔레바이오인식) 국제표준화기구를 중심으로 표준화가 진행되고 있다. 특히 이러한 모바일 바이오인식기술은 스마트폰을 통한 비대면 인증기술 수단으로서 핀테크의 중요한 요소기술로 작용될 전망이다. 한편, 위조지문 등 전통적인 바이오인식 기술의 위변조 위협으로 인한 우려도 증폭됨에 따라 스마트워치 등 웨어러블 디바이스에서 살아있는 사람의 심박수(심전도), 뇌파 등의 생체신호를 측정하여 스마트폰을 통하여 개인을 식별하는 차세대 바이오인식기술로 진화중에 있다. 본고에서는 바이오인식기술의 변천사와 함께 국내외 모바일 바이오인식기술 동향과 표준화 추진현황을 살펴보고, 지난 2015년 5월 29일 발족한 KISA "모바일 생체신호 인증기술 표준연구회"를 통하여 뇌파 심전도 등생체신호를 이용한 차세대 바이오인식 기술 및 표준화 계획을 수립하여 향후 바이오인식기반의 비대면 인증기술에 대한 추진전략을 모색하고자 한다.

A Method of Comparing Risk Similarities Based on Multimodal Data (멀티모달 데이터 기반 위험 발생 유사성 비교 방법)

  • Kwon, Eun-Jung;Shin, WonJae;Lee, Yong-Tae;Lee, Kyu-Chul
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2019.05a
    • /
    • pp.510-512
    • /
    • 2019
  • Recently, there have been growing requirements in the public safety sector to ensure safety through detection of hazardous situations or preemptive predictions. It is noteworthy that various sensor data can be analyzed and utilized as a result of mobile device's dissemination, and many advantages can be used in terms of safety and security. An effective modeling technique is needed to combine sensor data generated by smart-phones and wearable devices to analyze users' moving patterns and behavioral patterns, and to ensure public safety by fusing location-based crime risk data provided.

  • PDF

Detection of Tracheal Sounds using PVDF Film and Algorithm Establishment for Sleep Apnea Determination (PVDF 필름을 이용한 기관음 검출 및 수면무호흡 판정 알고리즘 수립)

  • Jae-Joong Im;Xiong Li;Soo-Min Chae
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.23 no.2
    • /
    • pp.119-129
    • /
    • 2023
  • Sleep apnea causes various secondary disease such as hypertension, stroke, myocardial infarction, depression and cognitive impairment. Early detection and continuous management of sleep apnea are urgently needed since it causes cardio-cerebrovascular diseases. In this study, wearable device for monitoring respiration during sleep using PVDF film was developed to detect vibration through trachea caused by breathing, which determines normal breathing and sleep apnea. Variables such as respiration rate and apnea were extracted based on the detected breathing sound data, and a noise reduction algorithm was established to minimize the effect even when there is a noise signal. In addition, it was confirmed that irregular breathing patterns can be analyzed by establishing a moving threshold algorithm. The results show that the accuracy of the respiratory rate from the developed device was 98.7% comparing with the polysomnogrphy result. Accuracy of detection for sleep apnea event was 92.6% and that of the sleep apnea duration was 94.0%. The results of this study will be of great help to the management of sleep disorders and confirmation of treatment by commercialization of wearable devices that can monitor sleep information easily and accurately at home during daily life and confirm the progress of treatment.

Design and Implementation of IoT Chatting Service Based on Indoor Location (실내 위치기반 사물인터넷 채팅 서비스 설계 및 구현)

  • Lee, Sunghee;Jeong, Seol Young;Kang, Soon Ju;Lee, Woo Jin
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.39C no.10
    • /
    • pp.920-929
    • /
    • 2014
  • Recently, embedded system which demand is explosively increasing in the fields of communication, traffic, medical and industry facilities, expands to cyber physical system (CPS) which monitors and controls the networked embedded systems. In addition, internet of things(IoT) technology using wearable devices such as Google Glass, Samsung Galaxy Gear and Sony Smart Watch are gaining attention. In this situation, Samsung Smart Home and LG Home Chat are released one after another. However, since these services can be available only between smart phones and home appliances, there is a disadvantage that information cannot be passed to other terminals without commercial global messaging server. In this paper, to solve above issues, we propose the structure of an indoor location network based on unit space, which prevents the information of the devices or each individual person from leaking to outside and can selectively communicate to all existent terminals in the network using IoT chatting. Also, it is possible to control general devices and prevent external leakage of private information.

DC-DC Converter for Low-Power Power Management IC (저-전력 전력 관리 회로를 위한 DC-DC 변환기)

  • Jeon, Hyeondeok;Yun, Beomsu;Choi, Joongho
    • Journal of IKEEE
    • /
    • v.22 no.1
    • /
    • pp.174-179
    • /
    • 2018
  • In this paper, design of high-efficiency DC-DC converter is presented for low-power PMIC (power management integrated circuit). As PMIC technologies for IoT and wearable devices have been continuously improved, high-efficiency energy harvesting schemes should be essential. Since the supply voltage resulting from energy harvesting is low and widely variable, design techniques to achieve high efficiency over a wide input voltage range are required. To obtain a constant switching frequency for wide input voltage range, frequency compensation circuit using supply-voltage variation sensing circuit is included. In order to obtain high efficiency performance at very low-power condition, accurate burst-mode control circuit was adopted to control switching operations. In the proposed DC-DC buck converter, output voltage is set to be 0.9V at the input voltage of 0.95~3.3V and maximum measured efficiency is up to 78% for the load current of 180uA.

Flexible Carbon/PDMS Composite for the Application of Sensor (신축성을 가진 Carbon/PDMS 복합체의 센서 응용 연구)

  • Lee, Junho;Park, Kyoung Ryeol;Mhin, Sungwook
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.28 no.4
    • /
    • pp.73-77
    • /
    • 2021
  • Flexible electrodes for wearable devices have been actively studied in not only achieving mechanical/electrical stability, but also providing various functionalities for extending its industrial application. In this study, a flexible carbon/PDMS composite is prepared by addition of carbon black (CB) as a conductive filler, and effect of CB with different contents on electrical properties of the composite was investigated for the application of flexible electrodes, temperature sensor and heater. With increase of CB contents, resistivity of the carbon/PDMS was increased, and excellent durability was observed, confirmed by repetitive stretching deformation test. Resistance increase of the carbon/PDMS with temperature reveals the property of positive temperature coefficient, which can be applied for temperature sensor. Also, joule heating on the carbon/PDMS was observed when electrical potential was applied, indicating the applicability of the carbon/PDMS for heater.