Browse > Article
http://dx.doi.org/10.6117/kmeps.2021.28.4.073

Flexible Carbon/PDMS Composite for the Application of Sensor  

Lee, Junho (Department of Advanced Materials Engineering, Kyonggi University)
Park, Kyoung Ryeol (Green Materials & Process R&D Group, Korea Institute of Industrial Technology)
Mhin, Sungwook (Department of Advanced Materials Engineering, Kyonggi University)
Publication Information
Journal of the Microelectronics and Packaging Society / v.28, no.4, 2021 , pp. 73-77 More about this Journal
Abstract
Flexible electrodes for wearable devices have been actively studied in not only achieving mechanical/electrical stability, but also providing various functionalities for extending its industrial application. In this study, a flexible carbon/PDMS composite is prepared by addition of carbon black (CB) as a conductive filler, and effect of CB with different contents on electrical properties of the composite was investigated for the application of flexible electrodes, temperature sensor and heater. With increase of CB contents, resistivity of the carbon/PDMS was increased, and excellent durability was observed, confirmed by repetitive stretching deformation test. Resistance increase of the carbon/PDMS with temperature reveals the property of positive temperature coefficient, which can be applied for temperature sensor. Also, joule heating on the carbon/PDMS was observed when electrical potential was applied, indicating the applicability of the carbon/PDMS for heater.
Keywords
flexible substrate; temperature sensor; heater; thermistor; Carbon/PDMS;
Citations & Related Records
연도 인용수 순위
  • Reference
1 V. Martinez, F. Stauffer, M. O. Adagunodo, C. Forro, J. Voros, and A. Larmagnac, "Stretchable silver nanowire-elastomer composite microelectrodes with tailored electrical properties", Appl. Mater. Interfaces, 7, 13467-13475 (2015).   DOI
2 A. Larmagnac, S. Eggenberger, H Janossy, and J. Voros, "Stretchable electronics based on Ag-PDMS composites", Sci. Rep., 4, 7254 (2014).   DOI
3 S. H. Jang, Y. L. Park, and H. Yin, "Influence of coalescence on the anisotropic mechanical and electrical properties of nickel powder/polydimethylsiloxane composites", Materials, 9, 239 (2014).   DOI
4 W. Liu, M. S. Song, B. Kong, and Y. Cui, "Flexible and stretchable energy storage: recent advances and future perspectives", Adv. Mater., 29, 1603436 (2017).   DOI
5 C. H. Lee, D. R. Kim, and X. Zheng, "Fabrication of nanowire electronics on nonconventional substrates by water-assisted transfer printing method", Nano Lett., 11, 3435-3439 (2011).   DOI
6 X. Pu, M. Liu, X. Chen, J. Sun, C. Du, Y. Zhang, J. Zhai, W. Hu, and Z. L. Wang, "Ultrastretchable, transparent triboelectric nanogenerator as electronic skin for biomechanical energy harvesting and tactile sensing", Sci. Adv., 3, e1700015 (2017).   DOI
7 S. H. Jeong, S. Zhang, K. Hjort, J. Hilborn, and Z. Wu, "PDMS-based elastomer tuned soft, stretchable and sticky for epidermal electronics", Adv. Mater., 28, 5830-5836 (2016).   DOI
8 T. Sekitani, H. Nakajima, H. Maeda, T. Fukushima, T. Aida, K. Hata, and T. Someya, "Stretchable active-matrix organic light-emitting diode display using printable elastic conductors", Nat. Mater., 8, 494-499 (2009).   DOI
9 H. S. Liu, B. C. Pan, and G. S. Liou, "Highly transparent Ag NW/PDMS stretchable electrodes for elastomeric electrochromic devices", Nanoscale, 9, 2633-2639 (2017).   DOI
10 S. M. Park, N. S. Jang, S. H. Ha, K. H. Kim, D. W. Jeong, J. Kim, J. Lee, S. H. Kim, and J. M. Kim, "Metal nanowire percolation micro-grids embedded in elastomers for stretchable and transparent conductors", J. Mater. Chem. C, 3, 8241-8247 (2015).   DOI
11 H. Hocheng and C. M. Chen, Design, "fabrication and failure analysis of stretchable electrical routings", Sensors, 14, 11855-11877 (2014).   DOI
12 J. Nam, B. Seo, Y. Lee, D. H. Kim, and S. Jo, "Cross-buckled structures for stretchable and compressible thin film silicon solar cells", Sci. Rep., 7, 7575 (2017).   DOI
13 Z. Yang, J. Deng, X. Sun, H. Li, and H. Peng, "Stretchable, wearable dye-sensitized solar cells", Adv. Mater., 26, 2643-2647 (2014).   DOI
14 Darren J. Lipomi and Z. Bao, "Stretchable, elastic materials and devices for solar energy conversion", Energ. Environ. Sci., 4, 3314-3328 (2011).   DOI
15 A. M. Zamarayeva, A. E. Ostfeld, M. Wang, J. K. Duey, I. Deckman, B. P. Lechene, G. Davies, D. A. Steingart, and A. C. Arias, "Flexible and stretchable power sources for wearable electronics", Sci. Adv., 3, e1602051 (2017).   DOI
16 Y. Cheng, R. Wang, H. Zhai, and J. Sun, "Stretchable electronic skin based on silver nanowire composite fiber electrodes for sensing pressure, proximity, and multidirectional strain", Nanoscale, 9, 3834-3842 (2017).   DOI
17 K. R. Park, J. E. Jeon, H. Han, S. Yoo, K. Shim, S. Mhin, "Facile design of conductive Ag-PDMS electrodes for stretchable electrodes", J. Electron. Mater., 48(1), 79-84 (2019).   DOI
18 G. S. Jeong, D. H. Baek, H. C. Jung, J. H. Song, J. H. Moon, S. W. Hong, I. Y. Kim, and S. H. Lee, "Solderable and electroplatable flexible electronic circuit on a porous stretchable elastomer", Nat. Commun., 3, 977 (2012).   DOI
19 T. W. Lee and H. H. Park, "The effect of MWCNTs on the electrical properties of a stretchable carbon composite electrode", Compos. Sci. Technol., 114, 11-16 (2015).   DOI
20 J. A. Fan, W. H. Yeo, Y. Su, Y. Hattori, W. Lee, S. Y. Jung, Y. Zhang, Z, Liu, H. Cheng, L. Falgout, M. Bajema, T. Coleman, D. Gregoire, R. J. Larsen, Y. Huang, and J. A. Rogers, "Fractal design concepts for stretchable electronics", Nat. Commun., 5, 3266 (2014).   DOI
21 H. Hwang, D. G. Kim, N. S. Jang, J. H. Kong, and J. M. Kim, "Simple method for high-performance stretchable composite conductors with entrapped air bubbles", Nanoscale Res. Lett., 11, 14 (2016).   DOI
22 A. Rinaldi, A. Tamburrano, M. Fortunato, and M. S. Sarto, "A flexible and highly sensitive pressure sensor based on a PDMS foam coated with graphene nanoplatelets", Sensors, 16, 2148 (2016).   DOI