• Title/Summary/Keyword: 원형 유동관

Search Result 72, Processing Time 0.018 seconds

Analysis of 3-Dimensional Hydrodynamic Focusing in Circular Capillary Tube and Rectangular Microchannel (원형 모세관과 사각형 단면의 미세채널에서 3차원 수력학적 집속유동 분석)

  • Yoon, Seong-Hee;Kim, Kyung-Hoon;Kim, Jung-Kyung
    • Journal of the Korean Society of Visualization
    • /
    • v.9 no.2
    • /
    • pp.21-26
    • /
    • 2011
  • Hydrodynamic focusing technique to generate focused flow has been used for flow cytometry in microfluidic devices. However, devices with circular capillary tubes made of glass are not suitable for flow visualization or optical signal detection because the rays of light are distorted at the curved interface. We devised a new acrylic chamber assembled with a pulled micropipette and a rectangular microchannel made of glass. This new channel geometry enabled us to visualize the three-dimensional (3D) flow characteristics with confocal imaging technique. We analyzed the 3D hydrodynamic focusing in a circular capillary tube and a rectangular microchannel over a practical range of flow rates, viscosities and pressure drops.

이론적 강제대류CHF 해석 모델의 연구 현황 및 성능 평가

  • Kwon, Hyuk-Sung;Jeon, Tae-Hyun;Hong, Sung-Duk;Hwang, Dae-Hyun;Park, Chul
    • Nuclear Engineering and Technology
    • /
    • v.27 no.6
    • /
    • pp.918-931
    • /
    • 1995
  • 임계열속을 예측하는 기존의 여러 방법중 임계열속 발생 역학구조에 근거한 이론적 접근 방법은 여러 유동형태(Flow pattern)별로 연구되고 있으며, 대표적으로 환상유동에서의 LFD(Liquid Film Dryout) 이론, 기포류에서의 BBLD(Bubble Boundary Layer Dryout) 흑은 LNID(Local Nucleation Initiated Dryout)이론 등이 제시되고 있다. 본 논문에서는 일반적으로 원자로 조건에 서 적용될 수 있는 LFD이론과 BBLD 이론에 대하여 대표적인 모델들을 소개하고 특성을 검토하였다. 특히 BBLD 이론중에서 기포군집 (Bubble coalescence) 모델과 층류막 드라이 아웃(Sublayer dryout) 모델에 대해서는 원형관에서의 임계열속 시험자료를 사용하여 각 모델의 예측 성능 및 특성을 평가하였다. 평가 결과, 기포군집 모형인 Weisman 모델의 예측성능이 가장 우수했으며 아울러 층류막 드라이아웃 모델인 Katto 모델과 Mudawwar 모델은 구성 인자중 기포군속도와 층류막 두께와의 관계가 보다 정확히 모형화되야 할 것으로 판단된다.

  • PDF

The Flow Visualization of ER Fluid Between Two Parallel-Plate Electrodes Separated by Small Distance (좁은 평행평판전극 사이의 ER유체 유동의 가시화)

  • Park, Myeong-Kwan;Rhee, Eun-Jun;Oshima, Shuzo;Yamane, Ryuichiro
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.23 no.7
    • /
    • pp.801-810
    • /
    • 1999
  • The purpose of present research was to get characteristics and basic knowledges of electrorheological(ER) suspension. To observe behaviors of the ER suspensions. transparent conductive plates were used to visualize the flow of ER suspensions between two parallel plate electrodes. The influence of flowing speed and intensity of electric field on the ER fluid were examined in circle-shaped electric field, and it takes several hundred milliseconds that suspensions in flow cluster. The present study also conducts a numerical analysis adopting the Bingham model. It is found that simple Bingham model can not property describe the flow behavior in the parallel plates.

Analysis for Air-Side Convective Heat Transfer Characteristics in Compact Heat Exchangers (밀집형 열교환기 내 공기 측 대류열전달특성)

  • Moh, Jeong-Hah;Lee, Sang-Ho
    • Proceedings of the SAREK Conference
    • /
    • 2009.06a
    • /
    • pp.1443-1448
    • /
    • 2009
  • Numerical analysis has been carried out to investigate air-side convective heat transfer characteristics in compact heat exchangers with continuous plate fins. Simulation results such as air flow and temperature distributions are presented, and heat transfer characteristics are compared for various inlet conditions. Results from various turbulence models are also compared for applicability. There is large difference between the local heat transfer coefficient distributions along the cylinder wall for circular tubes. Colburn j factors from the calculated results of circular and flat tubes in the heat exchangers are compared for various Reynolds number. The predicted results in this study can be applied to the optimal design of air conditioning system. with compact heat exchanger.

  • PDF

A Similarity of the Velocity Profiles According to Water Depth in Partially Filled Circular Pipe Flows (비만관 상태의 원형관로에서 수위에 따른 속도분포의 상사성)

  • Yoon, Ji-In;Kim, Young-Bae;Sung, Jae-Yong;Lee, Myeong-Ho
    • Journal of the Korean Society of Visualization
    • /
    • v.6 no.2
    • /
    • pp.28-32
    • /
    • 2008
  • Contrary to the flow rate in fully filled pipe flows, the flow rate in partially filled pipe flows is significantly influenced by the variation of water level, channel slop, and so on. The major difference in these two flows results from the existence of a free surface. To make it clear, in the present study, a similarity of the velocity profile in a partially filled circular pipe has been investigated according to the water level. A particle image velocimetry (PIV) technique was applied to measure the three-dimensional velocity profiles. As a result, there is found a similarity of the velocity profile near the central region. However, near the side wall, the similarity is broken due to the interaction between the wall and the free surface.

Study on Methanol Conversion Efficiency of Steam-Methanol Reforming on Pipe Shape and Flow Rate Variation in Curved Channel (수증기-메탄올 개질기의 곡유로 채널형 관 형태 변화에 따른 메탄올 전환율 및 유동 특성에 관한 수치해석적 연구)

  • Seong, Hong Seok;Lee, Chung Ho;Suh, Jeong Se
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.40 no.3
    • /
    • pp.173-179
    • /
    • 2016
  • This is a numerical study on the curved channel type of hydrogen reformer using the commercial code of fluid dynamics. We numerically compared the numerical model in a previous study model and the modelling of a tube type curved channel. In the result of numerical analysis on 4 types of curved channel reformers, the methanol conversion efficiency of type 1~4 were 45.0%, 45.3%, 45.6%, 45.6% respectively, and there was hardly any difference by ${\pm}0.6%$. In light of flow characteristics, the rectangle type tube and the type 2 with $45^{\circ}$ turn showed most uniform flow characteristics and concentration distribution of methanol, and the circular type tube and the type 3 with $90^{\circ}$ turn had most un-uniform flow characteristics and concentration distribution of methanol. We concluded that the design for curved channel reformer has to have rectangle type tube with curve of almost $45^{\circ}$ as in the type of curved pipe with $45^{\circ}$ turn.

Numerical Study on Turbulent Flow in a Conical Diffuser (원추형 디퓨져 내의 난류운동에 관한 수치해석적 연구)

  • 강신형;최영석
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.16 no.10
    • /
    • pp.1971-1978
    • /
    • 1992
  • A turbulent flow in a conical diffuser with total divergence angle of 8.deg. was numerically studied. The low Reynolds number k-.epsilon. model(Launder-Sharma model) was adopted to simulate the turbulence. The continuity and time averaged Navier-Stokes equations in a nonorthogonal coordinate system were solved by a finite volume method based on the fully elliptic formulation. The low Reynolds number k-.epsilon. model reasonably simulates the pressure recovery and the mean velocity components. However, there are also considerable discrepancies between predicted and measured shear stress distribution on the wall and turbulent kinetic energy distributions. It is necessary to investigate the flow structure at the entry of the diffuser, numerically as well as experimentally.

Flow Visualization of Pulsatile Flow in a Branching Tube using the PIV System and Numerical Analysis (PIV와 수치해석을 이용한 분지관내 맥동유동의 가시화)

  • Roh, Hyung-Woon;Suh, Sang-Ho;Yoo, Sang-Sin
    • Proceedings of the KSME Conference
    • /
    • 2000.04b
    • /
    • pp.535-540
    • /
    • 2000
  • The objective of the present study is to visualize the pulsatile flow fields by using three-dimensional computer simulation and the PIV system. A closed flow loop system was built for the steady and unsteady experiments. The Harvard pulsatile pump was used to generate the pulsatile pressure and velocity waveforms. Conifer powder as the tracing particles was added to water to visualize the flow field. Two consecutive particle images were captured by a CCD camera for the image processing. The cross-correlation method in combination with the moving searching area algorithm was applied for the image processing of the flow visualization. The pulsatile flow fields were visualized effectively by the PIV system in conjunction with the applied algorithm. The range validation and the area interpolation methods were used to obtain the final velocity vectors with high accuracy. The finite volume predictions were used to analyze three-dimensional flow patterns in the bifurcation model. The results of the PIV experiment and the computer simulation are in good agreement and the results show the recirculation zones and formation of the paired secondary flow distal to the apex of the bifurcated model. The results also show that the branch flow is pushed strongly to the inner wall due to the inertial force effect and helical motions are generated as the flow proceeds toward the outer wall.

  • PDF

A Semi-Empirical Correlation for an Adiabatic Interfacial Friction Factor (단열 계면 마찰계수에 대한 준 실험식)

  • Nam, Ho-Yun;Chun, Moon-Hyun
    • Nuclear Engineering and Technology
    • /
    • v.26 no.1
    • /
    • pp.108-118
    • /
    • 1994
  • A semi-empirical correlation has been developed for adiabatic interfacial friction factors in a long horizontal air-water countercurrent stratified flow conditions. Using a pipe and duct test sections, a series of experiments hate been conducted varying non-dimensional water depth and flow rates of air. On the basis of simultaneous measurement of the main flow parameters in a horizontal pipe and a duct, a semi-empirical correlation for the interfacial friction factor in a stratified flow regime has been developed employing a new concept of surface roughness in wavy flow. A total of 201 data point, including 15 concurrent pipe flow test data of others, have been used in the present analysis. A comparison between the data and the predictions of the present correlation shows that the agreement is within $\pm$30%.

  • PDF

Experimental Study of Characteristics of Three-Ring Impedance Meter and Dependence of Characteristics on Electric Conductivity of Fluids (3-ring 임피던스미터의 유체 전기 전도도 독립성에 대한 실험적 연구)

  • Kim, Jong-Rok;Ahn, Yeh-Chan;Kim, Moo-Hwan
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.34 no.11
    • /
    • pp.1027-1033
    • /
    • 2010
  • A two-phase (gas-liquid) flow is a common phenomenon in fluidic systems, e.g., fluidic systems in the electro-magnetic or nuclear power generation industry and in the steel industry. The measurement of a two-phase flow is important for guaranteeing the safety of the system and for achieving the desired performance. The measurement of the void fraction, which is one of the parameters of the two-phase flow that determines the pressure drop and heat transfer coefficient, is very important. The time resolution achieved by employing the impedance method that can be used to calculate the void fraction from the impedance of the fluid is high because the electric characteristics are taken into account. Therefore, this method can be employed to accurately measure the void fraction without distortion of flow in real time by placing electrodes on the walls of the tubes. Coney analytically studied a ring-type impedance meter, which can be employed in a circular tube. The aim of this study is to experimentally verify the robustness of a three-ring impedance meter to variations in the electric conductivity of the fluid; this robustness was suggested by Coney but was not experimentally verified.