• Title/Summary/Keyword: 원형외고정장치

Search Result 3, Processing Time 0.019 seconds

Stabilization of Short Juxta-articular Fractures Using a Circular External Skeletal Fixator System in Dogs (개에서 원형외고정장치를 이용한 관절주위 골절의 안정화)

  • Cheong, Hye-Yeon;Kim, Joo-Ho;Cha, Jae-Gwan;Seol, Jae-Won;Kim, Min-Su;Lee, Hae-Beom
    • Journal of Veterinary Clinics
    • /
    • v.31 no.6
    • /
    • pp.523-526
    • /
    • 2014
  • Three dogs were admitted for repair of bone fracture. Case 1 (Maltese, 1.8 kg, intact female, 5-month-old) and case 2 (poodle, 3.0 kg, intact female, 6-month-old) had non-weight bearing lameness in the left pelvic limb, and case 3 (mixed, 3.3 kg, intact female, age unknown) had non-weight-bearing lameness in the left thoracic limb. On orthopedic examination, there was pain, crepitus, palpable instability and substantial soft tissue swelling on the affected side. No neurological deficits were identified. Radiographs revealed left proximal metaphyseal tibial and fibular fractures in cases 1 and 2, and left proximal metaphyseal radial and ulnar fractures in case 3. All cases had closed long-bone fractures with short juxta-articular fracture segments. Under fluoroscopic guidance, proper placement of the ring fixation elements was confirmed during surgery. Two or three rings were used to stabilize fractures with traditional circular external skeletal fixators (CESF). Postoperative radiographs showed acceptable alignment and apposition of the previously identified fracture. Time to radiographic union ranged from 5 to 14 weeks and there were no signs of implant failure or pin tract infection. Functional outcomes were excellent in all cases. CESF can be successfully used to reduce short juxta-articular fractures in which bone plates or external skeletal fixation cannot be applied.

In Vitro Assessment of MRI Safety at 1.5 T and 3.0 T for Bone-Anchored Hearing Aid Implant (Bone-Anchored Hearing Aid Implant에 대한 1.5 T와 3.0 T에서 MRI 안전성의 생체외 평가)

  • Yeon, Kyoo-Jin;Kim, Hyun-Soo;Lee, Seung-keun;Lee, Tae-Soo
    • Journal of radiological science and technology
    • /
    • v.40 no.1
    • /
    • pp.19-25
    • /
    • 2017
  • The aim of this study was to evaluate Magnetic Resonance Imaging safety by measuring the translational attraction, torque and susceptibility artifact for Bone-Anchored Hearing Aid (BAHA) implant at 1.5 T and 3.0 T MRI by standard criteria. In vitro assessment tools were made of acrylic-resin by American Society for Testing and Materials (ASTM) F2052-06 and F2119-07 standard. Translational attraction of BAHA implant was measured by the maximum deflection angle at 96 cm position, where the magnetically induced deflection was the greatest. The torque was assessed by the qualitative criteria of evaluating the alignment and rotation pattern, when the BAHA implant was positioned on a line with $45^{\circ}$ intervals inside the circular container in the center of the bore. The susceptibility artifact images were obtained using the hanged test tool, which was filled with $CuSO_4$ solution. And then the artifact size was measured using Susceptibility A rtifact Measurement (SA M) software. In results, the translational attraction was 0 mm at both 1.5 T and 3.0 T and the torque was 0(no torque) at 1.5 T, and +1(mild torque) at 3.0 T. The size of susceptibility artifacts was between 13.20 mm and 38.91 mm. Therefore, The BAHA implant was safe for the patient in clinical MR environment.

A Study on the Pan-Jang in the Joseon Dynasty (조선시대 판장(板墻)에 관한 연구)

  • Oh, Jun-young;Kim, Young-mo
    • Korean Journal of Heritage: History & Science
    • /
    • v.49 no.1
    • /
    • pp.68-83
    • /
    • 2016
  • Pan-jang(板墻) has become the lost facility, and the examples of its original form can be found no more due to its variable material characteristics. In order to study panjang as a lost facility, the following are needed: - To bring to light its usage and examples. - To investigate its components and structure. Panjang refers to the wall made of wooden plate and is classified as a special wall according to its material characteristics. In addition, Chinese mokyeongbyuk(木影壁) and Japanese panbyeong(板?) are similar to Korean panjang in terms of the materials, but there are clear differences in their structures. Panjang was also transformed into various types according to their materials or forms. As the wooden elements of panjang, sinbang(信防), pillars, do-ri(道里), jungbang(中枋), inbang(引枋), parn(板), dae(帶), choyeop(草葉), bangyeon(方椽), gaeparn(蓋板), pyeonggodae(平高臺), and yeonharm(椽檻) were selectively used, and they are similar, in particular, to the components of ilgakmoon(一角門). The stylobate of panjang is largely classified into three according to the kinds and structures of the wooden elements; and its frame into two according to whether sanginbang(上引枋) is used or not. The materials for the roof area include planks(蓋板) and tiles and have the distinct structural differences according to each material.