• 제목/요약/키워드: 원통형 정전용량 변위센서

검색결과 7건 처리시간 0.037초

형상오차가 원통형 정전용량 변위센서의 축 회전오차의 측정에 미치는 영향 (Effects of Geometric Errors on the Measurement of Error Motions of Rotor with the Cylindrical Capacitive Displacement Sensor)

  • 안형준;장인배;한동철
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 1995년도 추계학술대회 논문집
    • /
    • pp.487-490
    • /
    • 1995
  • This paper discisses the effects geometric errors on the measurement of error motions of rotor with the cylindrical capacitive displacement sensor. Analytic model of the measuring process with this sensor is derived and this model shows that the effect of geometric errors of sensor is larger than that of rator on the measurement of error motions of rotor. The computer simulation shows effect of periodic errors in this sensor on the measuring orbit.

  • PDF

자기베어링의 실시간 정밀제어를 위한 원통형 정전용량 변위센서의 새로운 설계 (New Design of Cylindrical Capacitive Sensor for On-line Precision Control of AMB Spindles)

  • 전수;안형준;한동철
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2000년도 추계학술대회논문집A
    • /
    • pp.548-553
    • /
    • 2000
  • A new design of cylindrical capacitive sensor(CCS) for the displacement measurement of precision active magnetic bearing(AMB) spindle is presented in this paper. This research is motivated by the problem that existing 4-segment CCS is still sensitive to the $3^{rd}$ harmonic component of the geometric errors of a rotor. The procedure of designing new CCS starts from the modeling and error analysis of CCS. The angular size of CCS is set up as a design parameter, and new 8-segment CCS is introduced to possess an arbitrary angular size. The optimum geometry of CCS to minimize the effect of geometric errors is determined through minimum norm approach. Experimental results with test rotors have confirmed the improvement in geometric error suppression.

  • PDF

4채널 원통형 정전용량 변위센서의 자동ㆍ정밀 검보정 (Automatic and precise calibration of 4-channel cylindrical capacitive displacement sensor)

  • 김종혁;김일해;박만진;장동영;한동철;백영종
    • 한국공작기계학회:학술대회논문집
    • /
    • 한국공작기계학회 2004년도 춘계학술대회 논문집
    • /
    • pp.387-393
    • /
    • 2004
  • General purpose of cylindrical capacitive displacement sensor(CCS) is measuring run-out motion and deflection of rotor. If CCS has narrow sensing range, its sensitivity coefficients must be calibrated precisely. And x, y component of CCS output can be coupled. In this research, CCS calibration procedure is automated with automatic calibration program and PC-controlled stage. And, coupled-terms of CCS signals were removed and the errors between measured position and mapped CCS signal were reduced obviously by sensitivity matrix that linearly.

  • PDF

반경 방향 및 축 방향 운동 동시 측정을 위한 새로운 원통형 정전용량 변위센서 (A Novel Cylindrical Capacitive Sensor for both Radial and Axial Motion Measurements)

  • 안형준;김종혁;장동영;한동철
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2005년도 춘계학술대회 논문집
    • /
    • pp.276-279
    • /
    • 2005
  • This paper presents a novel cylindrical capacitive sensor (CCS) for both radial and axial motion measurements. Although the new CCS has almost the same geometric configuration as the conventional CCS, the unused axial area of the CCS is utilized to measure the axial motion of the rotor, which can affords more compact design and reduction of the system complexity. First, a theoretical model of the proposed CCS is derived. Based on the derived theoretical model, compensation methods to decouple the radial and axial motion measurements are proposed. In addition, error analysis is performed and a design rule is proposed to guarantee the same accuracy in measuring both radial and axial motions. Finally, a test rig and electronics for the proposed CCS are built and the effectiveness of the proposed CCS is verified with experiments and simulations.

  • PDF

고속 밀링 가공 시 주축 변위 측정을 통한 절삭력의 실시간 감시 (On-line Cutting Force Estimation by N[ensuring Spindle Displacement in High-Speed Milling Process)

  • 김종혁;김진현;김일해;안형준;장동영;한동철
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2006년도 춘계학술대회 논문집
    • /
    • pp.133-134
    • /
    • 2006
  • A cylindrical capacitive displacement sensor (CCS) was developed and applied for monitoring end milling processes. Dynamic characteristics of a spindle-assembly were measured using the CCS and a designed magnetic exciter. The technique to extract the spindle displacement component caused only by cutting from the measured signals using the CCS was proposed in the paper. Using CCS signals and FRF (Frequency Response Function) derived from dynamics of the spindle tool system, dynamic cutting forces are estimated quantitatively.

  • PDF

주축 변위 신호를 이용한 밀링가공의 채터 감시 (Chatter Monitoring of Milling Process using Spindle Displacement Signal)

  • 장훈근;김일해;장동영
    • 한국공작기계학회논문집
    • /
    • 제16권6호
    • /
    • pp.140-145
    • /
    • 2007
  • To improve productivity of a metal cutting process, it is required to monitor machining stability in real time. Since cutting environment is harsh against sensing conditions due to vibration, chip, and cutting fluid, etc., it is necessary to develop a robust and reliable sensing system for the practical application. In this work, a chatter monitoring system was developed and its effectiveness was proved. Spindle displacement caused by cutting was selected as a main monitoring parameter. A cylindrical capacitive displacement sensor was adopted. Chatter frequencies were identified through modal analysis. To quantify chatter vibrations, chatter correlation coefficient was introduced. The identification of the monitoring system showed a good agreement with the result of experiment.