• Title/Summary/Keyword: 원통형 복합적층 패널

Search Result 10, Processing Time 0.031 seconds

Postbuckling and Vibration Analysis of Cylindrical Composite Panel subject to Thermal Loads (열하중을 받는 복합적층 원통형 패널의 좌굴후 거동 및 진동해석)

  • Oh, Il-Kwon;Lee, In
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.2 no.2
    • /
    • pp.148-156
    • /
    • 1999
  • The thermal postbuckling and vibration characteristics of cylindrical composite panel subject to thermal loads are analyzed using finite elements. The von-Karman nonlinear displacement-strain relation based on the layerwise theory is applied to consider large deflections due to thermal loads. Cylindrical arc-length method is used to take into account the snapping phenomena. Thermal snapping and vibration characteristics are investigated for various structural parameters such as thickness ratio, shallowness angle and boundary conditions. The present results show that thermal snapping changes the mode shapes as well as static deformations.

  • PDF

Buckling and Postbuckling Behavior of Cylindrical Composite Panels with a Cutout (구멍을 가지는 원통형 복합적층 패널의 좌굴 및 좌굴후 거동)

  • 임진승;조명래;양원호
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.7 no.8
    • /
    • pp.272-281
    • /
    • 1999
  • Cylindrical panels are widely used as aircraft fuselages and rocket etc, and the cutouts for weight reduction or wiring at such structures tend to cause the stress concentration and the local radial displacement so that seriously effect the stability of structures. In this paper, for the cylindrical composite panel with coutout at the center, the buckling and postbuckling behaviour regarding the shape and size of cutout is analyzed by finite element method. Also the lamination mechanism , changing bending stiffness and fiber orientation angle variation are researched to be regarded in studying the laminated composite materials.

  • PDF

Vibration Analyses of Cylindrical Hybrid Panel with Viscoelastic Layer Based on Layerwise Finite Elements (층별변위 유한요소법에 기초한 점탄성층을 갖는 원통형 복합적층 패널의 진동해석)

  • Oh, Il-Kwon;Cheng, Tai-Hong
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.15 no.12 s.105
    • /
    • pp.1361-1369
    • /
    • 2005
  • Based on a full layerwise displacement shell theory, the nitration and damping characteristics of cylindrical sandwiched panels with viscoelastic layers are investigated. The transverse shear deformation and the normal strain of the cylindrical hybrid panels are fully taken into account for the structural damping modelling. The present finite element model Is formulated by using Hamilton's virtual work principle and the cylindrical curvature of hybrid panels is exactly modeled. Modal loss factors and frequency response functions are analyzed for various structural parameters of cylindrical sandwich panels. Present results show that the full layerwise finite element method can accurately predict the vibration and damping characteristics of the cylindrical hybrid panels with surface damping treatments and constrained layer damping.

Vibration Analyses of Cylindrical Hybrid Panel With Viscoelastic Layer Based On Layerwise Finite Elements (층별변위 유한요소법에 기초한 점탄성층을 갖는 원통형 복합적층 패널의 진동해석)

  • Oh, Il-Kwon;Cheong, Tai-Hong
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2005.11a
    • /
    • pp.772-778
    • /
    • 2005
  • Based on a full layerwise displacement shell theory, the vibration and damping characteristics of cylindrical sandwiched panels with viscoelastic layers are investigated. The transverse shear deformation and the normal strain of the cylindrical hybrid panels are fully taken into account for the structural damping modelling. The present finite element model is formulated by using Hamilton's virtual work principle and the cylindrical curvature of hybrid panels is exactly modeled. Modal loss factors and frequency response functions are analyzed for various structural parameters of cylindrical sandwich panels. Present results show that the full layerwise finite element method can accurately predict the vibration and damping characteristics of the cylindrical hybrid panels with surface damping treatments and constrained layer damping.

  • PDF

Buckling Behavior of Stiffened Laminated Composite Cylindrical Panel (보강된 복합적층 원통형패널의 좌굴거동)

  • 이종선;원종진;홍석주;윤희중
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.12 no.5
    • /
    • pp.88-93
    • /
    • 2003
  • Buckling behavior of stiffened laminated composite cylindrical panel was studied using linear and nonlinear deformation theory. Various buckling load factors are obtained for stiffened laminated composite cylindrical panels with rectangular type longitudinal stiffeners and various longitudinal length to radius ratio, which made from Carbon/Epoxy USN150 prepreg and are simply-supported on four edges under uniaxial compression. Buckling behavior design analyses are carried out by the nonlinear search optimizer, ADS.

Aerothermoelastic Analysis of Cylindrical Piezolaminated Shells Based on Multi-field Layerwise Theory (다분야 층별 이론에 기초한 원통형 압전적층 쉘의 공력열탄성학적 해석)

  • Oh, Il-Kwon;Shin, Won-Ho;Lee, In
    • Composites Research
    • /
    • v.15 no.3
    • /
    • pp.52-61
    • /
    • 2002
  • For the aerothermoelastic analysis of cylindrical piezolaminated shells, geometrically nonlinear finite elements based on the multi-field layerwise theory hale been developed. Applying a Han Krumhaar's supersonic piston theory, supersonic flutter analyses are performed for the cylindrical piezolaminted shells subject to thermal stresses and deformations. The possibility to increase flutter boundary and reduce thermoelastic deformations of piezolaminated panels is examined using piezoelectric actuations. Results show that active piezoelectric actuations can effectively increase the critical aerodynamic pressure by retarding the coalescence of flutter modes and compensating thermal stresses.

Minimum Weight Design of Stiffened Laminated Composite Cylindrical Panel with R Type Stiffener (R형 보강재로 보강된 복합적층 원통형패널의 최소중량화설계)

  • 원종진;이종선;홍석주
    • Proceedings of the KAIS Fall Conference
    • /
    • 2001.05a
    • /
    • pp.103-107
    • /
    • 2001
  • This study is simulation about buckling behavior under axial compression which is cylindrical panel laminated USN125 and USN150 made by various winding angle. And also this study compare with linear and nonlinear FDEM theory, and FEM theory. To solve the objective function and the design variables, this study use the linear and nonlinear buckling theories or FDEM and nonlinear search optimum design method of ADS for minimum weight design on which stiffened laminated composite cylindrical panel with stiffener that R-type section.

Buckling Behavior of Stiffened Laminated Composite Laminated Composite Cylindrical Panel (보강된 복합적층 원통형패널의 좌굴거동)

  • 원종진
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2000.04a
    • /
    • pp.549-554
    • /
    • 2000
  • In this study, using linear and nonlinear deformation theories and by closed-form analysis and finite difference energy methods, respectively, various buckling load factors are obtained for stiffened laminated composite cylindrical panels with rectangular type longitudinal stiffeners and various longitudinal length to radius ratios, which are made from Carbon/Epoxy USN150 prepreg and are simply-supported on four edges under uniaxial compression, and then for them, buckling behavior design analyses are carried out by the nonlinear search optimizer, ADS

  • PDF

Supersonic Flutter Analysis of Cylindrical Composite Panels with Structural Damping Treatments (구조 감쇠 처리된 원통형 복합적층 패널의 플러터 해석)

  • Shin, Won-Ho;Oh, Il-Kwon;Lee, In
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2002.05a
    • /
    • pp.131-134
    • /
    • 2002
  • Supersonic flutter analysis of cylindrical composite panels with structural damping treatments has been performed using the finite element method based on the layerwise shell theory. The natural frequencies and loss factors of cylindrical viscoelastic composites are computed considering the effects of transversely shear deformation. The panel flutter of cylindrical composite panels is analyzed considering structural damping effect. Various damping characteristics for unconstrained layer damping, constrained layer damping, and symmetrically co-cured sandwich laminates are compared with those of an original base panel in view of aeroelastic stabilities.

  • PDF

Dynamic Characteristics of Cylindrical Composite Panels With Surface Damping Treatments Using Full Layerwise Theory (완전층별변위이론에 근거한 표면감쇠처리된 원통형 복합적층 패널의 동적특성)

  • Seong, Tae-Hong;Lee, In;Oh, Il-Kwon
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2005.04a
    • /
    • pp.29-32
    • /
    • 2005
  • Based on the full layerwise displacement shell theory, vibration and damping characteristics of cylindrical sandwich panels are investigated. The transverse shear deformation and the normal strain are fully taken into account for structural damping modelling. Modal damping factors and frequency response functions are analyzed for various structural parameters of cylindrical sandwich beams. Present results shows that full layerwise theory can accurately predict vibration and damping characteristics of cylindrical composite panels with surface damping treatments and constrained layer damping. The viscoelastic materials depending on elevated temperature environment and exciting frequencies can be fully considered.

  • PDF