• Title/Summary/Keyword: 원전 격납건물

Search Result 82, Processing Time 0.034 seconds

Shell Finite Element for Nonlinear Analysis of Reinforced Concrete Containment Building (철근콘크리트 격납건물의 비선형 해석을 위한 쉘 유한요소)

  • Choun Young-Sun;Lee Hong-Pyo
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.19 no.1 s.71
    • /
    • pp.93-103
    • /
    • 2006
  • It is absolutely essential that safety assessment of the containment buildings during service life because containment buildings are last barrier to protect radioactive substance due to the accidents. Therefore, this study describes an enhanced degenerated shell finite element(FE) which has been developed for nonlinear FE analysis of reinforced concrete(RC) containment buildings with elasto-plastic material model. For the purpose of the material nonlinear analysis, Drucker-Prager failure criteria is adapted in compression region and material parameters which determine the shape of the failure envelop are derived from biaxial stress tests. Reissner-Mindlin(RM) assumptions are adopted to develop the degenerated shell FE so that transverse shear deformation effects is considered. However, it is found that there are serious defects such as locking phenomena in RM degenerated shell FE since the stiffness matrix has been overestimated in some situations. Therefore, shell formulation is provided in this paper with emphasis on the terms related to the stiffness matrix based on assumed strain method. Finally, the performance of the present shell element to analysis RC containment buildings is tested and demonstrated with several numerical examples. From the numerical tests, the present results show a good agreement with experimental data or other numerical results.

Shell Finite Element of Reinforced Concrete for Internal Pressure Analysis of Nuclear Containment Building (격납건물 내압해석을 위한 철근콘크리트 쉘 유한요소)

  • Lee, Hong-Pyo;Choun, Young-Sun
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.29 no.6A
    • /
    • pp.577-585
    • /
    • 2009
  • A 9-node degenerated shell finite element(FE), which has been developed for assessment of ultimate pressure capacity and nonlinear analysis for nuclear containment building is described in this paper. Reissner-Midnlin(RM) assumptions are adopted to develop the shell FE so that transverse shear deformation effects is considered. Material model for concrete prior to cracking is constructed based on the equivalent stress-equivalent strain relationship. Tension stiffening model, shear transfer mechanism and compressive strength reduction model are used to model the material behavior of concrete after cracking. Niwa and Aoyagi-Yamada failure criteria have been adapted to find initial cracking point in compression-tension and tension-tension region, respectively. Finally, the performance of the developed program is tested and demonstrated with several examples. From the numerical tests, the present results show a good agreement with experimental data or other numerical results.

MELCOR 1.8.3을 이용한 NUPEC 수소분포실험 분석

  • 최종수;이종인
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 1996.05b
    • /
    • pp.616-621
    • /
    • 1996
  • PWR 원전의 중대사고시 격납건물내 수소거동을 모의한 NUPEC의 수소분포실험 결과를 MELCOR 1.8.3 코드를 이용하여 검증 차원의 비교분석을 수행하였다. 이 연구에서는 정확한 실험조건 및 코드의 특성을 반영하여 실험에서의 유동 및 열역학적 조건을 모두 모의하였다. 이를 통해 실험에서 나타난 수소거동 특성을 재확인하고, MELCOR 코드의 분석능력 및 특성을 평가하였다. ISP-35에 대한 비교분석을 통해 다격실 격납건물내 중대 사고시 수소 혼합 및 분포 현상에 대한 MELCOR의 분석능력을 확인하였다.

  • PDF

중대사고시 Zr산화 반응모델의 비교분석

  • Choi, Yong;Cho, Seong-Won;Kim, Si-Dal;Kim, Dong-Ha;Kim, Hui-Dong
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 1998.05a
    • /
    • pp.806-811
    • /
    • 1998
  • 핵연료 피복관의 산화반응 현상은 중대사고시 원자로와 격납건물의 건전성을 위협하는 중요한 원인중의 하나이다 본 논문에서는 MELCOR에서 사용증인 Urbanic-Heidrich 상관식과 SCDAP/RELAP5/MOD3.1에서 사용중인 MATPRO-EG&G 상관식을 사용하여 산화 반응 모델이 노심손상에 미치는 영향을 울진원전3,4호기를 대상으로 MELCOR의 입력변수의 변화에 따른 민감도를 분석하였다. 분석결과, Urbanic-Heidrich 상관식이 MATPRO-EG&G상관식에 비해 핵연료 용융시작을 약 394초, 원자로 노심 하부에서의 용융물 재배치 (relocation)시작을 약 434초 가량 빨리 초래하여 사고진행에는 큰영향이 없음을 나타내고 있으나 노심하부 파손시점까지 발생한 수소량은 Urbanic-Heidrich 상관식이 MATPRO-EG&G상관식에 비해 약 1.4배정도 더 많이 발생시켜 격납건물 건전성에 대한 영향이 매우 크므로 보다 자세한 모델검토가 요구된다.

  • PDF

The Dynamic Nonlinear Analysis of Shell Containment Building subjected to Aircraft Impact Loading (항공기 충돌에 대한 쉘 격납건물의 동적 비선형해석)

  • 이상진
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.15 no.4
    • /
    • pp.567-578
    • /
    • 2002
  • The main purpose of this study is to investigate the dynamic behaviour of containment building in nuclear power plant excited by aircraft impact loading using a lower order 8-node solid element. The yield and failure surfaces for concrete material model is formulated on the basis of Drucker-Prager yield criteria and are assumed to be varied by taking account of the visco-plastic energy dissipation. The standard 8-node solid element has prone to exhibit the element deficiencies and the so-called B bar method proposed by Hughes is therefore adopted in this study. The implicit Newmark method is adopted to ensure the numerical stability during the analysis. Finally, the effect of different levels of cracking strain and several types of aircraft loading are examined on the dynamic behaviour of containment building and the results are quantitatively summarized as a future benchmark.

Random Response Analysis of Base Isolated Nuclear Container System (기초분리된 원전 격납구조물의 무작위 반응해석)

  • 홍원기;전제성;유광호
    • Computational Structural Engineering
    • /
    • v.7 no.4
    • /
    • pp.145-150
    • /
    • 1994
  • Seismic isolation in ordinary buildings has been successively adapted to provide flexibility for the reduction of base shear forces and its concept is accepting wide agreement in lengthening the natural, period to lessen the spectral acceleration transmitted into the structure. However, one of difficulties in implementing the innovative concept to nuclear structures is due to more severe requirements in both understanding and predicting the characteristics of isolators and the behavior of cushioned structures, Stochastic analysis has been carried out to investigate the response of base isolated nuclear containers to the random earthquake ground motion.

  • PDF

Assessment of the Internal Pressure Fragility of the PWR Containment Building Using a Nonlinear Finite Element Analysis (비선형 유한요소 해석을 이용한 PWR 격납건물의 내압 취약도 평가)

  • Hahm, Daegi;Park, Hyung-Kui;Choi, In-Kil
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.27 no.2
    • /
    • pp.103-111
    • /
    • 2014
  • In this study, the probabilistic internal pressure fragility analysis was performed by using the non-linear finite element analysis method. The target structure is one of the containment buildings of typical domestic pressurized water reactors(PWRs). The 3-dimensional finite element model of the containment building was developed with considering the large equipment hatches. To consider uncertainties in the material properties and structural capacities, we performed the sensitivity analysis of the ultimate pressure capacity with respect to the variation of four important uncertain parameters. The results of the sensitivity analysis were used to the selection of the probabilistic variables and the determination of their probabilistic parameters. To reflect the present condition of the tendon pre-stressing force, the data of the pre-stressing force acquired from the in-service inspections of tendon forces were used for the determination of the median value. Two failure modes(leak, rupture) were considered and their limit states were defined to assess the internal pressure fragility of target containment building. The internal pressure fragilities for each failure mode were evaluated in terms of median internal pressure capacity, high confidence low probability of failure(HCLPF) capacity, and fragility curves with respect to the confidence levels. The HCLPF capacity was 115.9 psig for leak failure mode, and 125.0 psig for rupture failure mode.

피동형격납용기 분석모델 개발 및 민감도 분석

  • Jeong, Beop-Dong;Kim, Seong-Oh;Hwang, Young-Dong;Jang, Mun-Hui;Jeong, Ik
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 1997.05a
    • /
    • pp.422-429
    • /
    • 1997
  • 피동형 격납용기 냉각계통 해석을 위하여 격납용기 압력, 온도 과도현상 분석 코드인 CONTEMPT4/MOD5 전산코드에 피동형 격납용기 열전달 모델을 추가하였다. 외부공기의 순환에 의한 철제 격납용기와 차폐건물 사이의 환형 공간의 냉각모델은 자연대류 및 혼합 대류의 기존 실험적 상관식을 사용하였고 상부에서 분사된 물의 증발에 의한 열전달 현상은 analogy 개념을 적용한 질량전달 모델을 도입하였다. 개선된 전산코드로 1000Mwe급 원전의 피동형 격납용기에 대하여 각 실험적 상관식의 차이, 물막의 형성비율, 습식냉각 지연시간 등의 민감도 분석을 수행하였다.

  • PDF