• Title/Summary/Keyword: 원자력 발전소

Search Result 2,240, Processing Time 0.033 seconds

Flow analysis of the Sump Pump (흡수정의 유동해석)

  • Jung, Han-Byul;Noh, Seung-Hee
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.3
    • /
    • pp.673-680
    • /
    • 2017
  • sump pump is a system that draws in water that is stored in a dam or reservoir. They are used to pump large amounts of water for cooling systems in large power plants, such as thermal and nuclear plants. However, if the flow and sump pump ratio are small, the flow rate increases around the inlet port. This causes a turbulent vortex or swirl flows. The turbulent flow reduces the performance and can cause failure. Various methods have been devised to solve the problem, but a correct solution has not been found for low water level. The most efficient solution is to install an anti-vortex device (AVD) or increase the length of the sump inlet, which makes the flow uniform. This paper presents a computational fluid dynamics (CFD) analysis of the flow characteristics in a sump pump for different sump inlet lengths and AVD types. Modeling was performed in three stages based on the pump intake, sump, and pump. For accurate analysis, the grid was made denser in the intake part, and the grid for the sump pump and AVD were also dense. 1.2-1.5 million grid elements were generated using ANSYS ICEM-CFD 14.5 with a mixture of tetra and prism elements. The analysis was done using the SST turbulence model of ANSYS CFX14.5, a commercial CFD program. The conditions were as follows: H.W.L 6.0 m, L.W.L 3.5, Qmax 4.000 kg/s, Qavg 3.500 kg/s Qmin 2.500 kg/s. The results of analysis by the vertex angle and velocity distribution are as follows. A sump pump with an Ext E-type AVD was accepted at a high water level. However, further studies are needed for a low water level using the Ext E-type AVD as a base.

A Study on the Determination of Reference Parameter for Aircraft Impact Induced Risk Assessment of Nuclear Power Plant (원전의 항공기 충돌 리스크 평가를 위한 대표매개변수 선정 연구)

  • Shin, Sang Shup;Hahm, Daegi;Choi, In-Kil
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.27 no.5
    • /
    • pp.437-450
    • /
    • 2014
  • In this study, we developed a methodology to determine the reference parameter for an aircraft impact induced risk assessment of nuclear power plant (NPP) using finite element impact analysis of containment building. The target structure used to develop the method of reference parameter selection is one of the typical Korean PWR type containment buildings. We composed a three-dimensional finite element model of the containment building. The concrete damaged plasticity model was used for the concrete material model. The steels in the tendon, rebar, and liner were modeled using the piecewise-linear stress-strain curves. To evaluate the correlations between structural response and each candidate parameter, we developed Riera's aircraft impact force-time history function with respect to the variation of the loading parameters, i.e., impact velocity and mass of the remaining fuel. For each force-time history, the type of aircraft is assumed to be a Boeing 767 model. The variation ranges of the impact velocity and remaining fuel percentage are 50 to 200m/s, and 30 to 90%, respectively. Four parameters, i.e., kinetic energy, total impulse, maximum impulse, and maximum force are proposed for candidates of the reference parameter. The wellness of the correlation between the reference parameter and structural responses was formulated using the coefficient of determination ($R^2$). From the results, we found that the maximum force showed the highest $R^2$ value in most responses in the materials. The simplicity and intuitiveness of the maximum force parameter are also remarkable compared to the other candidate parameters. Therefore, it can be concluded that the maximum force is the most proper candidate for the reference parameter to assess the aircraft impact induced risk of NPPs.

Decontamination of simulated radioactive metal waste by modified electrolytic Process with neutral salt electrolytes (개선된 중성염 진해공정을 이용한 모의 방사성 금속폐기물의 제염)

  • Lee, Ji-Hoon;Yuk, Wan-Yi;Yang, Ho-Yeon;Ha, Jong-Hyun
    • Journal of Radiation Protection and Research
    • /
    • v.27 no.2
    • /
    • pp.95-100
    • /
    • 2002
  • Conventional and modified electrolytic decontamination experiment were performed in the 1.7 M solution of sodium sulfate and sodium nitrate tot decontamination of carbon steel as the simulated metal wastes which have been produced in large amounts from nuclear power plants. Anode ant cathode were used as inconel and titanium respective. The reaction time and temperature were 1 hr and $25^{\circ}C$ The analyses were performed of the characteristics such as weight loss arid thickness change of metal waste. suspended solid in electrolyte and SEM observation. In modified electrolyte decontamination system with increased current density ranged from 0.1 to $0.6A/cm^2$, the metal waste showed thickness changes of $0.48{\pm}0.005$ to $67.7{\pm}0.02{\mu}m$ in 1.7 M sodium sulfate and those of $0.06{\pm}0.005$ to $17.7{\pm}0.05{\mu}m$ in sodium nitrate. Metal waste in modified electrolyte decontamination system showed the thickness change of $9.8{\pm}0.01{\mu}m$ while it reacted up to $3.7{\pm}0.03{\mu}m$ in conventional system with $0.3 A/cm^2$ of current density and 1.7 M sodium sulfate. Decontamination efficiencies of modified electrolytic process ate much hither than that of conventional electrolytic process when both are applied to metal waste.

Contextualized Nature of Technology in Socioscientific Issues (대학생들의 과학기술관련 사회쟁점(SSI) 논의에서 기술의 본성(NOT)은 어떻게 나타나는가?)

  • Lee, Hyunok;Lee, Hyunju
    • Journal of The Korean Association For Science Education
    • /
    • v.36 no.2
    • /
    • pp.303-315
    • /
    • 2016
  • Socioscientific issues (SSI), by their nature, are conceptually embedded in technology. Previous research reported that nature of technology (NOT), unlike nature of science, was quite explicitly manifested in SSI decision-making, and NOT could be a promising construct for promoting SSI reasoning. In this study, authors introduced an integrated conceptual framework for NOT, which consisted of four dimensions (i.e., artifacts, knowledge, practice and system) as diverse modes of technology. We adapted the framework to investigate students' conceptualizations of NOT in the context of various SSIs. Data was collected from 45 college students enrolled in a liberal arts course on science and technology. The students participated in a team project, where they prepared and led discussions for SSI topics in class. Seven topics concerning SSIs were selected by students themselves. The preparation and class discussion of each student group were audio-recorded, and final reports were also analyzed. As a result, NOT sub-components in the dimensions of artifacts and system were explicitly represented in most contexts of SSI with various ranges of understanding. Other sub-components under the dimensions of knowledge and practice were rarely or implicitly shown in the discussion. The depth of students' understanding on NOT varied. Implications for science education were discussed.

An Assessment of Radiological Consequences of I-131 Atmospheric Release by the System Analysis Method (계통해석법에 의한 I-131대기방출의 영향평가)

  • Yook, Chong-Chul;Lee, Jong-Il;Ha, Chung-Woo
    • Journal of Radiation Protection and Research
    • /
    • v.13 no.1
    • /
    • pp.8-20
    • /
    • 1988
  • The annual individual and collective doses to the thyroids of four age-dependent groups due to the in-take of I-131 released from the Younggwang nuclear power plant NU-1 & 2, Korea, are estimated using the model presented in ICRP 29. Sensitivity and robustness of the model are analyzed. In case of 0.12% fuel defect during normal operation, the collective dose is founded to be 3.05${\times}10^{-3}$man-thyroid-Sv, which is higher than the value calculated by the GASPAR code, 2.3${\times}10^{-3}$man-thyroid-Sv. The maximal individual annual doses resulting from an acute release are higher than those calculated under the assumption of continuous release by $1.4{\sim}1.7$ times. The most important pathway to the infant is milk and, in contrast, that to child, teen and adult is ingestion of crops. The model used is the calculation appears to be influenced by the variables such as roubstness-index. The weighted committed dose equivalent obtained by the ICRP 29 model is slightly higher than that calculated by the three-compartment model.

  • PDF

3D Finite Element Simulation of Pellet-Cladding Mechanical Interaction (3차원 유한요소를 이용한 핵연료와 피복관 기계적 거동 해석)

  • Seo, Sang Kyu;Lee, Sung Uk;Lee, Eun Ho;Yang, Dong Yol;Kim, Hyo Chan;Yang, Yong Sik
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.40 no.5
    • /
    • pp.437-447
    • /
    • 2016
  • In a nuclear power plant, the fuel assembly, which is composed of fuel rods, burns, and the high temperature can generate power. The fuel rod consists of pellets and a cladding that covers the pellets. It is important to understand the pellet-cladding mechanical interaction with regard to nuclear safety. This paper proposes simulation of the PCMI. The gap between the pellets and the cladding, and the contact pressure are very important for conducting thermal analysis. Since the gap conductance is not known, it has to be determined by a suitable method. This paper suggests a solution. In this study, finite element (FE) contact analysis is conducted considering thermal expansion of the pellets. As the contact causes plastic deformation, this aspect is considered in the analysis. A 3D FE module is developed to analyze the PCMI using FORTRAN 90. The plastic deformation due to the contact between the pellets and the cladding is the major physical phenomenon. The simple analytical solution of a cylinder is proposed and compared with the fuel rod performance code results.

Effect of Groove Shape on Residual Stress Distribution in Narrow Gap Welds (용접부 형상이 협개선 용접부 잔류응력 분포에 미치는 영향)

  • Soh, Na-Hyun;Yang, Jun-Seok;Pyo, Chang-Ryul;Huh, Nam-Su
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.35 no.6
    • /
    • pp.635-642
    • /
    • 2011
  • It is well known that conventional welding techniques can result in welding defects due to the large groove angle of the weld. In this context, the narrow gap welding (NGW) technique is applied in the nuclear industry because of its inherent merits such as the reduction in welding time and the shrinkage of the weld, and the small deformation of the weld resulting from the small groove angle and welding bead width. In this paper, the distribution of welding residual stress and deformation behavior of the ER308L weld due to NGW are predicted through nonlinear two-dimensional finite element analysis, in which the actual NGW process is simulated in detail. In particular, the effects of the shape of weld, i.e., the width of the weld and the shape of the welding groove, on the residual stress are investigated. The present results can be used to assess the integrity of defective nuclear components and to improve the welding process.

Spatial Variation in Macrobenthic Communities Affected by the Thermal Discharge Volumes of a Nuclear Power Plant on the East Coast of Korea (원자력 발전소의 온배수 배출량 변화에 따른 대형저서동물 군집의 공간 변화)

  • Yu, Ok Hwan;Lee, Hyung-Gon;Lee, Jae-Hac;Kim, Kyung-Tae;Myung, Cheol-Soo;Moon, Hyung Tae;Byun, Ju Young
    • Ocean and Polar Research
    • /
    • v.35 no.4
    • /
    • pp.299-312
    • /
    • 2013
  • This study analyzed the species composition and density of a macrobenthic community according to variations in the thermal discharge volumes of a nuclear power plant before, during, and after the shutdown of the nuclear power plant during two periods. In this study, 369 macrobenthic fauna species were collected, and their mean density was 1,712 ind. $m^{-2}$. The number of species and diversity of macrobenthic fauna decreased with distance from the thermal discharge area, regardless of whether the nuclear plant shutdown or not. Many macrobenthic taxa appeared near the thermal discharge area, but polychaetes species were more prominent in outer areas than at the discharge area. The density of macrobenthic fauna decreased with distance from the thermal discharge area during a plant shutdown in the fall of 2011, but increased, except at two sites, near the discharge area in the winter of 2012. Cluster analysis indicated that the spatial distribution of the macrobenthic community changed in areas near the nuclear power plant after a shutdown period; that is, the station group I, in areas near the nuclear power plant, became narrower after the shutdown, but it recovered to previously occupied areas after the nuclear power plant began operating again. Opportunistic species, such as the polychaetes Lumbrineris longifolia (= Scoletoma longifolia) and Mediomastus californiensis, which were present in high densities near thermal discharge areas, decreased after the shutdown but recovered after the plant re-opened. The number of species and diversity of the macrofauna and the density of dominant species showed a significant correlation with temperature, except in winter periods. The results of this study revealed that changes in the amount of thermal discharge before and after the shutdown of a nuclear power plant could exert an influence on the structure of macrobenthic community within the thermal discharge areas depending on the season.

A Study on Electrical Characteristics for Coil Winding Number Changes of Eddy Current Bobbin Coil for Steam Generator Tubes in NPPs (원전 증기발생기 전열관 와전류검사용 보빈코일의 권선 수 변화에 대한 전기적 특성 연구)

  • Nam, Min-Woo;Kim, Cheol-Gi
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.32 no.1
    • /
    • pp.64-70
    • /
    • 2012
  • Two kinds of eddy current probes are mainly used to perform the steam generator tube integrity assesment in NPPs. The first one is the bobbin probe using for inspection of volumetric defect like a fretting wear. The second one is the rotating probe using for inspection of non-volumetric defect like a crack. The eddy current probe is one of the essential components which consist of the whole eddy current examination system, and provides a decisive data for the tube integrity in accordance with acceptance criteria described in specific procedures. The design of ECT probe is especially important to improve examination results because the quality of acquired ECT data is depended on the probe design characteristics, such as coil geometry, electrical properties, operation frequency. In this study, it is analyzed that the coil winding number of differential bobbin probe affects the electrical properties of the probe. Eddy current bobbin probes for the steam generator tubes in NPPs are designed and fabricated according to the results. Experiment shows that the change in coil winding number has much effects on the optimum inspection frequency determined by the tube geometry and material. Therefore, the coil winding number in bobbin probe is very important in the probe design. In this study, a basis of the coil winding number for the eddy current bobbin probe design for steam generator tubes in NPPs is established.

On-Land Seismic Survey of Korea (한국의 육상 탄성파탐사)

  • Kwon, Byung-Doo
    • Economic and Environmental Geology
    • /
    • v.39 no.4 s.179
    • /
    • pp.441-450
    • /
    • 2006
  • The on-land seismic survey in Korea was begun in mid-1960s. Kim et al.(1967) of Korea Geological Survey reported on the result of gravity and seismic reflection surveys conducted in the Pohang area for the period of 1963-64 to assess its possibility of oil entrapment. Hyun and Kim (1966) carried out a refraction survey on the tunnel wall. Since then, the KGS geophysicists had conducted seismic surveys on Kyungsang sedimentary basin as a main project for several years. In 1970s, on-land seismic surveys had been conducted for various purposes such as site investigation for the nuclear power plants and industrial complex, exploration for ground water, mineral resources and underground tunnel. The first reflection survey with CMP acquisition was attempted in 1978 by using a digital recording system. But most of on-land seismic surveys had employed the refraction method until 1980s. In 1990s, high resolution reflection and various borehole seismic surveys such as tomography, uphole, downhole, cross-hole methods have been attempted by universities and engineering companies. The applications of on-land seismic surveys have been enlarged for both academic and industrial purposes such as investigation of geologic structure of the fault and tidal flat area, construction of highway, railroad and dam, geothermal energy and mineral resource exploration, environmental assessment for waste disposal sites and archaeological investigations. In 2002, the first crustal seismic survey was carried out on the profile of 294km length across the whole peninsular. It is expected that the advanced technology and experience acquired through offshore seismic surveys, which have been conducted in continental shelf of Korea and foreign oil fields, will stimulate the more active on-land seismic explorations.