• Title/Summary/Keyword: 원심임펠러

Search Result 144, Processing Time 0.029 seconds

Production of Bacterial Cellulose by Gluconacetobacter hansenii Using a New Bioreactor Equipped with Centrifugal Impellers (원심 임펠러가 장착된 발효조에서 G. hansenii에 의한 미생물셀룰로오스 생산)

  • Khan, Salman;Shehzad, Omer;Khan, Taous;Ha, Jung Hwan;Park, Joong Kon
    • Korean Chemical Engineering Research
    • /
    • v.47 no.4
    • /
    • pp.506-511
    • /
    • 2009
  • In order to improve the bacterial cellulose(BC) production yield, centrifugal and inclined centrifugal impellers were developed. A 6 flat-blade turbine impeller was used as a control system. The flow pattern in the fermenter and volumetric oxygen transfer coefficient($k_La$) of these fermentation systems were studied. Fermentations were carried out for the production of BC by G. hansenii PJK in a 2-L jar fermenter equipped with new impellers. Liquid medium was circulated from the bottom, through the cylinder of the impeller and to the wall. The volumetric oxygen transfer coefficients, $k_La$, of inclined centrifugal and centrifugal impeller systems at 100 rpm were 23 and 15% of the conventional turbine impeller system, respectively. However, the conversion of microbial cells to cellulose non-producing mutant decreased and this results in the increase in BC production at low rotating speed of impellers.

Experimental Study on Stall Inception in a Centrifugal Compressor (원심압축기 스톨 발단에 관한 실험적 연구)

  • Kang, Jeong-Seek;Kang, Shin-Hyoung
    • 유체기계공업학회:학술대회논문집
    • /
    • 2000.12a
    • /
    • pp.200-210
    • /
    • 2000
  • 본 연구에서는 고속의 원심압축기에서 스톨 발단에 관한 연구를 수행하였다. 스톨을 일으키는 요인과, 스톨이 발생하기 전에 이를 미리 경고할 수 있는 방법을 주된 연구 주제로 삼았다. 원주방향으로 균일하게 분포된 8개의 고속응답 압력변환기를 사용하여 순간압력을 측정하였으며, 이 신호를 공간 푸리에 변환(space Fourier transform)을 사용하여 스톨의 발단을 알리는 신호를 측정하였고, 회전하는 파의 에너지(Traveling Wave Energy) 방법을 사용하여 스톨을 미리 경고하는 방법에 대하여 연구하였다. 회전하는 파의 에너지 방법은 스톨을 경고하는 데 좋은 성능을 보였으며, 저속에서는 약 임펠러 100회전, 중간속도에서는 약 200회전, 그리고 고속에서는 약 임펠러 1000회전의 경고시간을 보였다. 그리고 스톨 발단 근처에서 공간 푸리에 계수의 위상이 임펠러 주파수의 속도로 선형적인 증가를 보이는 구간이 나타났으며, 또한 임펠러 주파수의 스펙트럼이 스톨로 접근하면서 증가하는 것으로부터, 임펠러 주파수가 스톨을 일으키는 중요한 요인으로 작용함을 알 수 있었다. 또한 임펠러의 회전속도에 관계없이 스톨로 접근하면서 임펠러 주파수의 스펙트럼이 증가하므로, 이 값이 스톨을 경고하는 방법으로 사용될 수 있음을 보였으며, 약 임펠러 2n회전의 경고시간을 얻을 수 있었고, 임펠러의 속도가 빠를수록 긴 경고시간을 얻었다. 이 방법의 개발로 하나의 센서의 측정만으로도 효과적으로 스톨을 경고할 수 있는 기반을 마련하였다.

  • PDF

An Analysis of Flow and Noise for Vacuum Cleaner Centrifugal Fan (진공청소기 원심팬의 유동과 소음 해석)

  • 전완호;이덕주;유기완
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 1995.10a
    • /
    • pp.130-135
    • /
    • 1995
  • 본 연구에서는 30000rpm으로 회전하는 진공청소기 원심팬의 유동장을 임펠러, 디퓨저, 케이싱을 모두 고려하여 해석하였다. 또한 삼차원으로 배출되는 출구를 간단한 sink 패널로 모델하여 출구의 효과를 충분히 고려하였다. 해석된 유동장 자료를 이용하여 먼 거리에서의 음압을 예측하였다. 예측된 음압자료는 FFT를 이용하여 측정된 값과 주파수 영역에서 비교하였다. 또한 진공청소기 원심팬의 측정자료에서 보이는 광역소음특성이 임펠러에서 흘려지는 후류와류의 교란에 의한 임펠러와 디퓨저 깃의 비정상 힘이 주된 원인임을 밝혔다.

  • PDF

CFD analysis of the Disk Friction Loss on the Centrifugal Compressor Impeller (원심 압축기의 임펠러 원판 마찰 손실에 대한 CFD 해석)

  • Kim, Hyun-Yop;Cho, Lee-Sang;Cho, Jin-Soo
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.39 no.7
    • /
    • pp.596-604
    • /
    • 2011
  • To improve the total efficiency of centrifugal compressor, it is necessary to reduce the disk friction loss, which is defined as the power loss. In this study, the disk friction loss due to the axial clearance and the surface roughness effect is analyzed and proposed the new empirical equation for the reduction of the disk friction loss. The rotating reference frame technique and the 2-equation k-${\omega}$ SST model using commercial CFD code FLUENT is used for the steady-state analysis of the centrifugal compressor impeller. According to CFD results, the disk friction loss of the impeller is more affected by the surface roughness than the change of the axial clearance. For the minimization of the disk friction loss on the centrifugal compressor impeller, the magnitude of the axial clearance should be designed to the same size compare with theoretical boundary layer thickness and the surface roughness should be minimized.

Centrifugal Compressor Performance Characteristics Analysis with Impeller Leading Edge Location (임펠러 앞전 위치에 따른 원심압축기 성능특성 분석)

  • Kim, Dongjun;Kim, Kuisoon;Choi, Jeongyeol
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.20 no.6
    • /
    • pp.38-45
    • /
    • 2016
  • A study was conducted on the effect of leading edge location for the performance characteristics of a centrifugal compressor impeller. Five impellers with different leading edge location were selected for numerical analysis. The impeller with leading edge located 10% away from the inlet about meridional distance from entrance to exit showed the best total pressure ratio and efficiency. Also, this case showed relatively uniform flow distribution because of a weak intensity of the separation region at impeller exit. The impeller with leading edge located far from this location showed lowest total pressure ratio and efficiency. Performance of compressor also decreased due to non-uniform flow distribution at impeller exit.

Optimization of a Centrifugal Compressor Impeller(I): Shape Parameters and Design Variables (원심압축기 최적화를 위한 연구(I): 형상변수 및 설계변수에 관한 연구)

  • Choi, Hyoung-Jun;Park, Young-Ha;Ahn, Kook-Young;Cho, Soo-Yong
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.39 no.5
    • /
    • pp.424-432
    • /
    • 2011
  • Shape parameters and design variables for a centrifugal compressor impeller were investigated for optimizing a centrifugal compressor. In order to compare the performance of an optimized impeller with the performance of the original impeller, an already tested impeller was chosen and design variables for optimization were selected. The meridional shapes at the shroud and at the hub were re-designed using the Bezier curve. The camber-lines of the impeller blade at the hub and at the tip were also expressed by the Bezier curve. The shape curves for impeller could be expressed using 6-8 control points. Among them, eight control points which have strong effect to the shape can be selected as design variables for optimization. Therefore, any impeller which is expressed by data points for its shape can be optimized using few design variables.

Shape Optimization of Impeller Blades for 15,000 HP Centrifugal Compressor Using Fluid Structural Interaction Analysis (15,000 마력급 원심식 압축기 임펠러 블레이드의 유체-구조 연성해석을 이용한 형상최적설계)

  • Kang, Hyun Su;Oh, Jeongsu;Han, Jeong Sam
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.38 no.6
    • /
    • pp.547-556
    • /
    • 2014
  • This paper discusses a one-way fluid structural interaction (FSI) analysis and shape optimization of the impeller blades for a 15,000 HP centrifugal compressor using the response surface method (RSM). Because both the aerodynamic performance and the structural safety of the impeller are affected by the shape of its blades, shape optimization is necessary using the FSI analysis, which includes a structural analysis for the induced fluid pressure and centrifugal force. The FSI analysis is performed in ANSYS Workbench: ANSYS CFX is used for the flow field and ANSYS Mechanical is used for the structural field. The response surfaces for the FSI results (efficiency, pressure ratio, maximum stress, etc.) generated based on the design of experiments (DOE) are used to find an optimal shape for the impeller blades, which provides the maximum aerodynamic performance subject to the structural safety constraints.

Application of Airfoil Impeller for Enhancement of Aerodynamic Performance of High Speed Centrifugal Fan (고속 원심홴의 공력성능 향상을 위한 에어포일 임펠러 적용)

  • Park, Kyung Hyun;Park, Chang Hwan
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.40 no.5
    • /
    • pp.321-327
    • /
    • 2016
  • This paper presents the application of airfoil impeller for enhancement of aerodynamic performance of a high speed centrifugal fan. Three airfoil impellers are proposed, considering the maximum thickness and the location of maximum thickness of the airfoil. C4 airfoil thickness distribution is applied to the three airfoil impellers. The impellers are evaluated using CFD (computational fluid dynamics) and suction power test. From the results, it is confirmed that flow separations on the pressure side of the impeller blades and the pressure side of diffuser blades are reduced when airfoil blade is applied to the impellers. It is also confirmed that with the centrifugal fan having airfoil impellers, there is an increase in fan efficiency by approximately 3% and reduction in specific sound level by approximately 1.3 dB(A).

Flow Analysis for Performance Characteristics with Closed Type Impeller Shapes of a Centrifugal Compressor (원심압축기 밀폐형 임펠러 형상에 따른 성능특성 파악을 위한 유동해석)

  • Cho, Jongjae;Yoon, YongSang;Cho, MyungHwan;Kang, SukChul
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.21 no.1
    • /
    • pp.26-35
    • /
    • 2017
  • The high-cycle fatigue cracking and the resonance generated in operation of a centrifugal compressor are main cause of the impeller damage. In order to prevent the damage, the impeller is designed or modified to have sufficient strength to withstand the operating condition. The damage prevent design will lead to a change of the flow condition and the performance characteristics of the compressor. In this study, the computational analysis were performed to identify the flow and the performance characteristics. The cases are a scalloped and a increased the blade thickness models with a closed type impeller. As the analysis results, the value of head coefficient and total to total efficiency for the increased the blade thickness model was decreased by each 0.5% and 0.1% than the values of the baseline model. Each value for the scalloped model was increased by 0.4% and was decreased by 1.6%.

Numerical Study on Cavitation Performance Evaluation in a Centrifugal Pump Impeller (원심펌프 임펠러의 캐비테이션 성능평가에 관한 수치적 연구)

  • Mo, Jang-Oh;Kim, You-Taek;Lee, Young-Ho
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.36 no.2
    • /
    • pp.286-293
    • /
    • 2012
  • In this investigation, flow analysis with single phase has been performed for a centrifugal impeller with a design efficiency of 90%, head of 20m and rotational speed of 3500 rpm at a design flow rate of 16m3. The impeller was designed based on an empirical formula suggested by A.J. Stepanoff. In a case of the single phase analysis, the hydraulic efficiency and head is 88.8% and 19.4m, respectively, which showed a good agreement with the values designed. The flow analysis with two phases was carried out under the various NPSH, at whose 8.79m the cavitation on the suction side of the blade was observed. The required NPSH of the designed impeller is approximately 6.5m and above this value, the designed centrifugal pump impeller needs to be operated under inlet pressure condition.