• Title/Summary/Keyword: 원뿔 캐비테이터

Search Result 2, Processing Time 0.017 seconds

Numerical Analysis of the Drag of Conical Cavitators (원뿔 캐비테이터의 항력에 대한 수치해석)

  • Kim, Hyoung-Tae;Lee, Hyun-Bae;Cho, Jung-Kyu
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.52 no.4
    • /
    • pp.305-314
    • /
    • 2015
  • In this paper, a numerical analysis is carried out to study the drag of conical cavitators, supercavity generation devices for the high-speed underwater vehicle. The realizable k-∊ turbulence model and the Schnerr-Sauer cavitation model are applied to calculate steady-state supercavitating flows around cones of various cone angles. The calculated drags of the cones are decomposed of the pressure and the friction parts and their dependency on the geometry and the flow conditions have been analyzed. It is confirmed that the pressure drag coefficients of the cones can be estimated by a simple function of both the cone angle and the cavitation number while the friction drag coefficients approximately by well-known empirical formulas, e.g., Schults-Grunow's for the drag of the flat plate. Finally a practical method for estimating the total drags of supercavitating cones is suggested, which can be useful consequently for the design of conical cavitaors.

An Estimation of the Size of Supercavities for Conical Cavitators (원뿔 캐비테이터의 초공동 크기 추정)

  • Kim, Hyoung-Tae;Kim, Byeung-jin;Choi, Jung-Kyu;Yoon, Hyun-Gull
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.53 no.2
    • /
    • pp.92-100
    • /
    • 2016
  • A comparative method is applied to evaluate well-known formulas for estimating the size of supercavities of axisymmetric cavitators for the supercavitating underwater vehicle. Basic functional forms of these formulas are derived first for the cavity diameter from a momentum integral estimate and second for the cavity length from an asymptotic analysis of inviscid supercavity flows. The length and the diameter of axisymmetric supercavities estimated by each formula are compared, with available experimental data for a disk and a 45° conical cavitators, and also with computational results obtained by a CFD code, ‘fluent’, for conical cavitators of wide range of cone angles. Results for estimating the length and the diameter of the supercavities show in general a good agreement, which confirms the size of the supercavities for disk and conical cavitators can be estimated accurately by these simple formulas of an elementary function of cavitation number and drag coefficient of the cavitator. These formulas will be useful for from conceptual design of the cavitator to real-time control of the supercavitating underwater vehicle.