• Title/Summary/Keyword: 원리 중심

Search Result 874, Processing Time 0.024 seconds

Exploring Pre-Service Earth Science Teachers' Understandings of Computational Thinking (지구과학 예비교사들의 컴퓨팅 사고에 대한 인식 탐색)

  • Young Shin Park;Ki Rak Park
    • Journal of the Korean earth science society
    • /
    • v.45 no.3
    • /
    • pp.260-276
    • /
    • 2024
  • The purpose of this study is to explore whether pre-service teachers majoring in earth science improve their perception of computational thinking through STEAM classes focused on engineering-based wave power plants. The STEAM class involved designing the most efficient wave power plant model. The survey on computational thinking practices, developed from previous research, was administered to 15 Earth science pre-service teachers to gauge their understanding of computational thinking. Each group developed an efficient wave power plant model based on the scientific principal of turbine operation using waves. The activities included problem recognition (problem solving), coding (coding and programming), creating a wave power plant model using a 3D printer (design and create model), and evaluating the output to correct errors (debugging). The pre-service teachers showed a high level of recognition of computational thinking practices, particularly in "logical thinking," with the top five practices out of 14 averaging five points each. However, participants lacked a clear understanding of certain computational thinking practices such as abstraction, problem decomposition, and using bid data, with their comprehension of these decreasing after the STEAM lesson. Although there was a significant reduction in the misconception that computational thinking is "playing online games" (from 4.06 to 0.86), some participants still equated it with "thinking like a computer" and "using a computer to do calculations". The study found slight improvements in "problem solving" (3.73 to 4.33), "pattern recognition" (3.53 to 3.66), and "best tool selection" (4.26 to 4.66). To enhance computational thinking skills, a practice-oriented curriculum should be offered. Additional STEAM classes on diverse topics could lead to a significant improvement in computational thinking practices. Therefore, establishing an educational curriculum for multisituational learning is essential.

Optimization and Development of Prediction Model on the Removal Condition of Livestock Wastewater using a Response Surface Method in the Photo-Fenton Oxidation Process (Photo-Fenton 산화공정에서 반응표면분석법을 이용한 축산폐수의 COD 처리조건 최적화 및 예측식 수립)

  • Cho, Il-Hyoung;Chang, Soon-Woong;Lee, Si-Jin
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.30 no.6
    • /
    • pp.642-652
    • /
    • 2008
  • The aim of our research was to apply experimental design methodology in the optimization condition of Photo-Fenton oxidation of the residual livestock wastewater after the coagulation process. The reactions of Photo-Fenton oxidation were mathematically described as a function of parameters amount of Fe(II)($x_1$), $H_2O_2(x_2)$ and pH($x_3$) being modeled by the use of the Box-Behnken method, which was used for fitting 2nd order response surface models and was alternative to central composite designs. The application of RSM using the Box-Behnken method yielded the following regression equation, which is an empirical relationship between the removal(%) of livestock wastewater and test variables in coded unit: Y = 79.3 + 15.61x$_1$ - 7.31x$_2$ - 4.26x$_3$ - 18x$_1{^2}$ - 10x$_2{^2}$ - 11.9x$_3{^2}$ + 2.49x$_1$x$_2$ - 4.4x$_2$x$_3$ - 1.65x$_1$x$_3$. The model predicted also agreed with the experimentally observed result(R$^2$ = 0.96) The results show that the response of treatment removal(%) in Photo-Fenton oxidation of livestock wastewater were significantly affected by the synergistic effect of linear terms(Fe(II)($x_1$), $H_2O_2(x_2)$, pH(x$_3$)), whereas Fe(II) $\times$ Fe(II)(x$_1{^2}$), $H_2O_2$ $\times$ $H_2O_2$(x$_2{^2}$) and pH $\times$ pH(x$_3{^2}$) on the quadratic terms were significantly affected by the antagonistic effect. $H_2O_2$ $\times$ pH(x$_2$x$_3$) had also a antagonistic effect in the cross-product term. The estimated ridge of the expected maximum response and optimal conditions for Y using canonical analysis were 84 $\pm$ 0.95% and (Fe(II)(X$_1$) = 0.0146 mM, $H_2O_2$(X$_2$) = 0.0867 mM and pH(X$_3$) = 4.704, respectively. The optimal ratio of Fe/H$_2O_2$ was also 0.17 at the pH 4.7.

Effect of the Suicide Prevention Program to the Impulsive Psychology of the Elementary School Student (자살예방 프로그램이 초등학교 충동심리에 미치는 영향)

  • Kang, Soo Jin;Kang, Ho Jung;Cho, Won Cheol;Lee, Tae Shik
    • Journal of Korean Society of Disaster and Security
    • /
    • v.6 no.1
    • /
    • pp.65-72
    • /
    • 2013
  • In this study, the early suicide prevention program was applied to the elementary school students and compared the prior & post effect of the program, and verified the status of psychology change like emotional status, or temptation to take a suicide, and presented the possibility as a suicide prevention program. The period of adolescence is the very unstable period in the process of growth being cognitively immature, emotionally impulsive period. It is the period emotionally unstable and unpredictable possible to select the method of suicide as an extreme method to escape the reality, or impulsive problem solving against small conflict or dispute situation. Many stress of the student such as recent nuclear family, expectation of parents to their children, education problem, socio-environmental elements, individual psychological factor lead students to the extreme activity of suicide in recent days. In this study, the scope of stress experienced in the elementary school as well as idea and degree of temptation regarding suicide by the suicide prevention program were identified, and through prevention program such as meditation training, breath training and through experience of anger control, emotion-expression, self overcome and establish positive self-identity and make understanding Self-control, Self-esteem & preciousness of life based on which the effect to suicide prevention was analyzed. The study was made targeting 51 students of 2 classes of 6th grade of elementary school of Goyang-si and processed 30 minutes every morning focused on through experience & activity of the principle & method of brain science. The data was collected for 20 times before starting morning class by using Suicide Probability Scale(herein SPS-A) designed to predict effectively suicide Probability, suicide risk prediction scale, surveyed by 7 areas such as Positive outlook, Within the family closeness, Impulsivity, Interpersonal hostility, Hopelessness, Hopelessness syndrome, suicide accident. Analytical methods and validation was used the Wilcoxon's signed rank test using SPSS Program. Though the process of program in short period, but there was a effective and positive results in the 7 areas in the average comparison. But in the t-test result, there was a different outcome. It indicated changes in the 3 questionnaires (No.7, No.14, No.19) out of 31 SPS-A questionnaires, and there was a no change to the rest item. It also indicated more changes of the students in the class A than class B. And in case of the class A students, psychological changes were verified in the areas of Hopelessness syndrome, suicide accident among 7 areas after the program was processed. Through this study, it could be verified that different results could be derived depending on the Student tendency, program professional(teacher in charge, processing lecturer). The suicide prevention program presented in this article can be a help in learning and suicide prevention with consistent systematization, activation through emotion and impulse control based on emotional stress relief and positive self-identity recovery, stabilization of brain waves, and let the short period program not to be died out but to be continued connecting from childhood to adolescence capable to make surrounding environment for spiritual, physical healthy growth for which this could be an effective program for suicide prevention of the social problem.

Estimation of GARCH Models and Performance Analysis of Volatility Trading System using Support Vector Regression (Support Vector Regression을 이용한 GARCH 모형의 추정과 투자전략의 성과분석)

  • Kim, Sun Woong;Choi, Heung Sik
    • Journal of Intelligence and Information Systems
    • /
    • v.23 no.2
    • /
    • pp.107-122
    • /
    • 2017
  • Volatility in the stock market returns is a measure of investment risk. It plays a central role in portfolio optimization, asset pricing and risk management as well as most theoretical financial models. Engle(1982) presented a pioneering paper on the stock market volatility that explains the time-variant characteristics embedded in the stock market return volatility. His model, Autoregressive Conditional Heteroscedasticity (ARCH), was generalized by Bollerslev(1986) as GARCH models. Empirical studies have shown that GARCH models describes well the fat-tailed return distributions and volatility clustering phenomenon appearing in stock prices. The parameters of the GARCH models are generally estimated by the maximum likelihood estimation (MLE) based on the standard normal density. But, since 1987 Black Monday, the stock market prices have become very complex and shown a lot of noisy terms. Recent studies start to apply artificial intelligent approach in estimating the GARCH parameters as a substitute for the MLE. The paper presents SVR-based GARCH process and compares with MLE-based GARCH process to estimate the parameters of GARCH models which are known to well forecast stock market volatility. Kernel functions used in SVR estimation process are linear, polynomial and radial. We analyzed the suggested models with KOSPI 200 Index. This index is constituted by 200 blue chip stocks listed in the Korea Exchange. We sampled KOSPI 200 daily closing values from 2010 to 2015. Sample observations are 1487 days. We used 1187 days to train the suggested GARCH models and the remaining 300 days were used as testing data. First, symmetric and asymmetric GARCH models are estimated by MLE. We forecasted KOSPI 200 Index return volatility and the statistical metric MSE shows better results for the asymmetric GARCH models such as E-GARCH or GJR-GARCH. This is consistent with the documented non-normal return distribution characteristics with fat-tail and leptokurtosis. Compared with MLE estimation process, SVR-based GARCH models outperform the MLE methodology in KOSPI 200 Index return volatility forecasting. Polynomial kernel function shows exceptionally lower forecasting accuracy. We suggested Intelligent Volatility Trading System (IVTS) that utilizes the forecasted volatility results. IVTS entry rules are as follows. If forecasted tomorrow volatility will increase then buy volatility today. If forecasted tomorrow volatility will decrease then sell volatility today. If forecasted volatility direction does not change we hold the existing buy or sell positions. IVTS is assumed to buy and sell historical volatility values. This is somewhat unreal because we cannot trade historical volatility values themselves. But our simulation results are meaningful since the Korea Exchange introduced volatility futures contract that traders can trade since November 2014. The trading systems with SVR-based GARCH models show higher returns than MLE-based GARCH in the testing period. And trading profitable percentages of MLE-based GARCH IVTS models range from 47.5% to 50.0%, trading profitable percentages of SVR-based GARCH IVTS models range from 51.8% to 59.7%. MLE-based symmetric S-GARCH shows +150.2% return and SVR-based symmetric S-GARCH shows +526.4% return. MLE-based asymmetric E-GARCH shows -72% return and SVR-based asymmetric E-GARCH shows +245.6% return. MLE-based asymmetric GJR-GARCH shows -98.7% return and SVR-based asymmetric GJR-GARCH shows +126.3% return. Linear kernel function shows higher trading returns than radial kernel function. Best performance of SVR-based IVTS is +526.4% and that of MLE-based IVTS is +150.2%. SVR-based GARCH IVTS shows higher trading frequency. This study has some limitations. Our models are solely based on SVR. Other artificial intelligence models are needed to search for better performance. We do not consider costs incurred in the trading process including brokerage commissions and slippage costs. IVTS trading performance is unreal since we use historical volatility values as trading objects. The exact forecasting of stock market volatility is essential in the real trading as well as asset pricing models. Further studies on other machine learning-based GARCH models can give better information for the stock market investors.