• Title/Summary/Keyword: 원격 식별

Search Result 157, Processing Time 0.029 seconds

A Study on the Development of Emergency Response Guidance in Case of Passenger Ship Fire (여객선 화재발생 시 대응가이던스 개발에 관한 연구)

  • Kim, Byeol;Hwang, Kwang-Il;Jeong, Eun-Seok;Moon, Serng-Bae
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2018.05a
    • /
    • pp.36-37
    • /
    • 2018
  • This study is about the development of emergency response guidance according to the fire safety index in the fire safety module, which is one of the on-board remote monitoring system. In this paper divided the zones based on the location of the fire sensor for passenger ship which is one of the service passenger ships and developed on the emergency response guidance by the identified zones.

  • PDF

Design of Web Based Parallel I/O Control System Using IEEE 1284 Operating Modes (IEEE 1284 동작 모드를 사용하는 웹 기반 병렬 I/O 제어 장치의 설계)

  • Chang, Ho-Sung
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.11 no.3
    • /
    • pp.991-996
    • /
    • 2010
  • In this paper, we designed a parallel I/O control system using IEEE 1284 operating modes and implemented remote control communication under the internet environment. The IEEE 1284 standard defines an interface compatible with several distinct operation modes and brings higher performance to the PC parallel port. Therefore, parallel port devices become easier to configure and simplify interface because new operating systems bring PnP function to the parallel port with the Device/ID identification sequence. With these enhancements, the parallel port become an even better low-cost, readily available I/O port on the PC.

Design and Implementation of Vision Box Based on Embedded Platform (Embedded Platform 기반 Vision Box 설계 및 구현)

  • Kim, Pan-Kyu;Lee, Jong-Hyeok
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.11 no.1
    • /
    • pp.191-197
    • /
    • 2007
  • Vision system is an object recognition system analyzing image information captured through camera. Vision system can be applied to various fields, and vehicle recognition is ole of them. There have been many proposals about algorithm of vehicle recognition. But have complex calculation processing. So they need long processing time and sometimes they make problems. In this research we suggested vehicle type recognition system using vision bpx based on embedded platform. As a result of testing this system achieves 100% rate of recognition at the optimal condition. But when condition is changed by lighting, noise and angle, rate of recognition is decreased as pattern score is lowered and recognition speed is slowed.

Design and Implementation of the Voice Feature Elimination Technique to Protect Speaker's Privacy (사용자 프라이버시 보호를 위한 음성 특징 제거 기법 설계 및 구현)

  • Yu, Byung-Seok;Lim, SuHyun;Park, Mi-so;Lee, Yoo-Jin;Yun, Sung-Hyun
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2012.11a
    • /
    • pp.672-675
    • /
    • 2012
  • 음성은 가장 익숙하고 편리한 의사 소통 수단으로 스마트폰과 같이 크기가 작은 모바일 기기의 입력 인터페이스로 적합하다. 서버 기반의 음성 인식은 서버를 방문하는 다양한 사용자들을 대상으로 음성 모델을 구축하기 때문에 음성 인식률을 높일 수 있고 상용화가 가능하다. 구글 음성인식, 아이폰의 시리(SiRi)가 대표적인 예이며 최근 스마트폰 사용자의 증가로 이에 대한 수요가 급증하고 있다. 서버 기반 음성 인식 기법에서 음성 인식은 스마트폰과 인터넷으로 연결되어 있는 원격지 서버에서 이루어진다. 따라서, 사용자는 스마트폰에 저장된 음성 데이터를 인터넷을 통하여 음성 인식 서버로 전달해야 된다[1, 2]. 음성 데이터는 사용자 고유 정보를 가지고 있으므로 개인 인증 및 식별을 위한 용도로 사용될 수 있으며 음성의 톤, 음성 신호의 피치, 빠르기 등을 통해서 사용자의 감정까지도 판단 할 수 있다[3]. 서버 기반 음성 인식에서 네트워크로 전송되는 사용자 음성 데이터는 제 3 자에게 쉽게 노출되기 때문에 화자의 신분 및 감정이 알려지게 되어 프라이버시 침해를 받게 된다. 본 논문에서는 화자의 프라이버시를 보호하기 위하여 사용자 음성 데이터로부터 개인의 고유 특징 및 현재 상태를 파악할 수 있는 감정 정보를 제거하는 기법을 설계 및 구현하였다.

Classification of Forest Vertical Structure Using Machine Learning Analysis (머신러닝 기법을 이용한 산림의 층위구조 분류)

  • Kwon, Soo-Kyung;Lee, Yong-Suk;Kim, Dae-Seong;Jung, Hyung-Sup
    • Korean Journal of Remote Sensing
    • /
    • v.35 no.2
    • /
    • pp.229-239
    • /
    • 2019
  • All vegetation colonies have layered structure. This layer is called 'forest vertical structure.' Nowadays it is considered as an important indicator to estimate forest's vital condition, diversity and environmental effect of forest. So forest vertical structure should be surveyed. However, vertical structure is a kind of inner structure, so forest surveys are generally conducted through field surveys, a traditional forest inventory method which costs plenty of time and budget. Therefore, in this study, we propose a useful method to classify the vertical structure of forests using remote sensing aerial photographs and machine learning capable of mass data mining in order to reduce time and budget for forest vertical structure investigation. We classified it as SVM (Support Vector Machine) using RGB airborne photos and LiDAR (Light Detection and Ranging) DSM (Digital Surface Model) DTM (Digital Terrain Model). Accuracy based on pixel count is 66.22% when compared to field survey results. It is concluded that classification accuracy of layer classification is relatively high for single-layer and multi-layer classification, but it was concluded that it is difficult in multi-layer classification. The results of this study are expected to further develop the field of machine learning research on vegetation structure by collecting various vegetation data and image data in the future.

A Study on the Application of GOCI to Analyzing Phytoplankton Community Distribution in the East Sea (동해에서 식물플랑크톤 군집 분포 분석을 위한 GOCI 활용 연구)

  • Choi, Jong-kuk;Noh, Jae Hoon;Brewin, Robert J.W.;Sun, Xuerong;Lee, Charity M.
    • Korean Journal of Remote Sensing
    • /
    • v.36 no.6_1
    • /
    • pp.1339-1348
    • /
    • 2020
  • Phytoplankton controls marine ecosystems in terms of nutrients, photosynthetic rate, carbon cycle, etc. and the degree of its influence on the marine environment depends on their physical size. Many studies have been attempted to identify marine phytoplankton size classes using the remote sensing techniques. One of successful approach was the three-component model which estimates the chlorophyll concentrations of three phytoplankton size classes (micro-phytoplankton; >20 ㎛, nano-; 2-20 ㎛ and pico-; <2 ㎛) as a function of total chlorophyll. Here, we examined the applicability of Geostationary Ocean Colour Imager (GOCI) to the mapping of the phytoplankton size class distribution in the East Sea. A fit of the three-component model to a biomarker pigment dataset collected in the study area for some years including a large harmful algal bloom period has been carried out to derive size-fractioned chlorophyll concentration (CHL). The tuned three-component model was applied to the hourly GOCI images to identify the fractions of each phytoplankton size class for the entire CHL. Then, we investigated the distribution of phytoplankton community in terms of the size structure in the East Sea during the harmful Cochlodinium polykrikoides blooms in the summer of 2013.

A Study on Class Sample Extraction Technique Using Histogram Back-Projection for Object-Based Image Classification (객체 기반 영상 분류를 위한 히스토그램 역투영을 이용한 클래스 샘플 추출 기법에 관한 연구)

  • Chul-Soo Ye
    • Korean Journal of Remote Sensing
    • /
    • v.39 no.2
    • /
    • pp.157-168
    • /
    • 2023
  • Image segmentation and supervised classification techniques are widely used to monitor the ground surface using high-resolution remote sensing images. In order to classify various objects, a process of defining a class corresponding to each object and selecting samples belonging to each class is required. Existing methods for extracting class samples should select a sufficient number of samples having similar intensity characteristics for each class. This process depends on the user's visual identification and takes a lot of time. Representative samples of the class extracted are likely to vary depending on the user, and as a result, the classification performance is greatly affected by the class sample extraction result. In this study, we propose an image classification technique that minimizes user intervention when extracting class samples by applying the histogram back-projection technique and has consistent intensity characteristics of samples belonging to classes. The proposed classification technique using histogram back-projection showed improved classification accuracy in both the experiment using hue subchannels of the hue saturation value transformed image from Compact Advanced Satellite 500-1 imagery and the experiment using the original image compared to the technique that did not use histogram back-projection.

Detection and Grading of Compost Heap Using UAV and Deep Learning (UAV와 딥러닝을 활용한 야적퇴비 탐지 및 관리등급 산정)

  • Miso Park;Heung-Min Kim;Youngmin Kim;Suho Bak;Tak-Young Kim;Seon Woong Jang
    • Korean Journal of Remote Sensing
    • /
    • v.40 no.1
    • /
    • pp.33-43
    • /
    • 2024
  • This research assessed the applicability of the You Only Look Once (YOLO)v8 and DeepLabv3+ models for the effective detection of compost heaps, identified as a significant source of non-point source pollution. Utilizing high-resolution imagery acquired through Unmanned Aerial Vehicles(UAVs), the study conducted a comprehensive comparison and analysis of the quantitative and qualitative performances. In the quantitative evaluation, the YOLOv8 model demonstrated superior performance across various metrics, particularly in its ability to accurately distinguish the presence or absence of covers on compost heaps. These outcomes imply that the YOLOv8 model is highly effective in the precise detection and classification of compost heaps, thereby providing a novel approach for assessing the management grades of compost heaps and contributing to non-point source pollution management. This study suggests that utilizing UAVs and deep learning technologies for detecting and managing compost heaps can address the constraints linked to traditional field survey methods, thereby facilitating the establishment of accurate and effective non-point source pollution management strategies, and contributing to the safeguarding of aquatic environments.

A study on the Effect of Process, IT, and Organization Characteristics on Business Process Virtualizability (업무 환경의 디지털 전환에서 업무 특성, IT 특성, 조직 특성이 업무 프로세스 가상성에 미치는 영향 연구)

  • Yituo Feng;Sundong Kwon
    • Information Systems Review
    • /
    • v.24 no.4
    • /
    • pp.119-142
    • /
    • 2022
  • Organizations are attempting a digital transformation that converts physical business processing into virtual business processing. Through this digital transformation, organizations are overcoming time and space constraints and creating competitiveness. The digital transformation of this work environment has been accelerated as many organizations have implemented remote work due to the recent COVID-19 pandemic. This study focused on business process virtualizability, which is the result of the rapid digital transformation of the work environment. Business process virtualizability is the resulting quality, such as the suitability or excellence of business processing in a virtual environment. This research model is the effect of process, IT and organizational characteristics on business process virtualizability. As a result of the verification of people who have experienced remote work in a virtual environment, first, it was confirmed that, in terms of process characteristics, sensory requirements affect business process virtualizability, but relationship requirements, synchronism requirements, and identification and control requirements do not. Second, in terms of IT characteristics, it was confirmed that representation and reach affect business process virtualizability. Third, it was confirmed that, in terms of organizational characteristics, job autonomy affects business process virtualizability, but evaluation unfairness does not. This study found that representation and reach of IT had the most significant influence on business process virtualizability, job autonomy was next, and sensory requirements had the lowest influence. This presents practical implications for organizations to increase the success potential of business process virtualizability.

Evaluation of Applicability of Sea Ice Monitoring Using Random Forest Model Based on GOCI-II Images: A Study of Liaodong Bay 2021-2022 (GOCI-II 영상 기반 Random Forest 모델을 이용한 해빙 모니터링 적용 가능성 평가: 2021-2022년 랴오둥만을 대상으로)

  • Jinyeong Kim;Soyeong Jang;Jaeyeop Kwon;Tae-Ho Kim
    • Korean Journal of Remote Sensing
    • /
    • v.39 no.6_2
    • /
    • pp.1651-1669
    • /
    • 2023
  • Sea ice currently covers approximately 7% of the world's ocean area, primarily concentrated in polar and high-altitude regions, subject to seasonal and annual variations. It is very important to analyze the area and type classification of sea ice through time series monitoring because sea ice is formed in various types on a large spatial scale, and oil and gas exploration and other marine activities are rapidly increasing. Currently, research on the type and area of sea ice is being conducted based on high-resolution satellite images and field measurement data, but there is a limit to sea ice monitoring by acquiring field measurement data. High-resolution optical satellite images can visually detect and identify types of sea ice in a wide range and can compensate for gaps in sea ice monitoring using Geostationary Ocean Color Imager-II (GOCI-II), an ocean satellite with short time resolution. This study tried to find out the possibility of utilizing sea ice monitoring by training a rule-based machine learning model based on learning data produced using high-resolution optical satellite images and performing detection on GOCI-II images. Learning materials were extracted from Liaodong Bay in the Bohai Sea from 2021 to 2022, and a Random Forest (RF) model using GOCI-II was constructed to compare qualitative and quantitative with sea ice areas obtained from existing normalized difference snow index (NDSI) based and high-resolution satellite images. Unlike NDSI index-based results, which underestimated the sea ice area, this study detected relatively detailed sea ice areas and confirmed that sea ice can be classified by type, enabling sea ice monitoring. If the accuracy of the detection model is improved through the construction of continuous learning materials and influencing factors on sea ice formation in the future, it is expected that it can be used in the field of sea ice monitoring in high-altitude ocean areas.