• Title/Summary/Keyword: 워터젯 스크러버

Search Result 3, Processing Time 0.015 seconds

Removal of Hydrogen Fluoride from Waterjet Plasma Wastewater by Electrocoagulation (전해응집법에 의한 불화수소 함유 워터젯 플라즈마 폐수처리)

  • Lee, Chae Hong;Chun, Young Nam
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.34 no.10
    • /
    • pp.702-708
    • /
    • 2012
  • Tetrafluoromethane ($CF_4$) has been used as etching and Chemical Vapor Deposition (CVD) gases for semiconductor manufacturing processes. These gases need to be removed efficiently because of their strong absorption of infrared radiation and long atmospheric lifetimes which cause the global warming effect. Also, the wastewater including the fluorine is caused by of the ground water pollution. Long-term consumption of water containing excessive fluoride can lead to fluorosis of the teeth and bones. The wastewater including the fluorine among the by-product which is generated by using the waterjet plasma after destroying $CF_4$ by HF is generated. The system which can remove the hydrogen fluoride among the wastewater by using the electrocoagulation using this wastewater the aluminum electrode was developed. The operating condition such as initial pH, electrocoagulation time, wastewater flow rate, current density were investigated experimentally using a electrocoagulation. Through the parametric studies, the highest hydrogen fluoride destruction of 85% was achieved at 3.5 initial pH, 10 min electrocoagulation time, 10 mL/min wastewater flow rate and $159A/m^2$ current density.

Development of a Plasma Waterjet Scrubber for the Reduction of PFCs (과불화탄소 제거를 위한 플라즈마 워터젯 스크러버 개발)

  • Lee, Chae-Hong;Chun, Young-Nam
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.26 no.6
    • /
    • pp.624-632
    • /
    • 2010
  • Perfluorocarbons (PFCs) are widely used in semiconductor industry. These gases need to be removed efficiently because of their strong absorption of infrared radiation and long atmospheric lifetimes which cause the global warming effect. To destruct $CF_4$, a waterjet gliding arc plasma was designed and manufactured. The highest $CF_4$ destruction showed at waterjet plasma case, compared to plasma discharge only or water scrubber only, respectively. In addition, it could be known that the $CF_4$ destruction should be associated with the electron and OH radicals. The operating conditions such as waterjet flow rate, initial $CF_4$ concentration, total gas flow rate, specific energy input were investigated experimentally using a plasma waterjet scrubber. Through the parametric studies, the highest $CF_4$ destruction of 94.5% was achieved at 0.2% $CF_4$, 2.1 kJ/L SEI, 20 L/min total gas flow rate and 18.5 mL/min waterjet flow rate.

Decomposition Characteristics of Tetrafluoromethane Using a Waterjet Plasma Scrubber (워터젯 플라즈마 스크러버 사불화탄소 분해 특성)

  • Lim, Mun Sup;Chun, Young Nam
    • Journal of Climate Change Research
    • /
    • v.8 no.1
    • /
    • pp.63-71
    • /
    • 2017
  • It is recognized that tetrafluoromethane ($CF_4$) has a great influence on global warming. The $CF_4$ is known to have a large impact on climate change due to its large global warming index. In this study, a waterjet plasma scrubber (WPS) was designed and manufactured for the $CF_4$ decomposition. The WPS is a novel technology which is combined a gliding arc plasma and water injection at the center of the plasma discharge. This can give an innovative way for $CF_4$ decomposition by achieving larger plasma columnand generating OH radicals. A performance analysis was achieved for the design factors such as waterjet flow rate, total gas flow rate, consumption electric power, and electrode gap. The highest $CF_4$ decomposition and energy efficiencies were 64.8% and 6.43 g/kWh, respectively; Optimal operating conditions were 20 mL/min of waterjet flow rate, 200 L/min total gas flow rate, 5.3 kW consumption electric power, and 4.4 mm electrode gap. As for the 2 stage reactor of the WPS, the $CF_4$ decomposition efficiency improved as the 85.3% while the energy efficiency decreased as the 5.57 g/kWh.