• 제목/요약/키워드: 움직임 물체

검색결과 236건 처리시간 0.028초

실시간 영상에서 물체의 색/모양 정보를 이용한 움직임 검출 알고리즘 구현 (The motion estimation algorithm implemented by the color / shape information of the object in the real-time image)

  • 김남우;허창우
    • 한국정보통신학회논문지
    • /
    • 제18권11호
    • /
    • pp.2733-2737
    • /
    • 2014
  • 실시간 영상을 이용하여 움직임 검출을 하는데 사용하는 배경 차영상 기법에 의한 움직임 및 변화 영역 검출 방법과 움직임 히스토리에 의한 움직임 검출법, 광류에 의한 움직임 검출법, 움직임 추적을 위한 추적하려는 물체의 히스토그램의 역투영을 이용하면서 물체의 중심점을 추적하는 MeanShift와 물체의 중심, 크기, 방향을 함께 추적하는 CamShift, Kalman 필터에 의한 움직임 추적 알고리즘 등이 있다. 본 논문에서는 물체의 색상과 모양 정보를 이용한 움직임 검출 알고리즘을 구현하고 검증하였다.

영상에서 움직임 물체의 손실된 영역 보정 기법 (Techniques for correcting lost region of moving objects in video)

  • 우병조;김성관;주영훈
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2015년도 제46회 하계학술대회
    • /
    • pp.1377-1378
    • /
    • 2015
  • 본 논문에서는 영상에서 움직임 물체의 손실된 영역 보정 기법을 제안한다. 제안하는 방법은 먼저, 입력 영상에서 차 영상기법을 이용하여 움직임 물체를 추출한다. 추출한 움직임 물체는 손실된 영역과 미세한 잡음을 포함하고 있어 모폴로지 알고리즘을 이용하여 잡음을 제거하고 손실된 영역을 보정하기 위해 차 영상에 사용한 입력 영상에서 히스토그램 평활화(Histogram equalization)를 통해 영상의 명암을 강조한다. 명암이 강조된 영상에서 Canny 에지를 추출한다. 추출한 에지 영상에서 차 영상을 이용해 추출한 움직임 물체의 위치를 기준으로 플러드 필 알고리즘을 적용한다. 플러드 필 알고리즘을 적용하면 손의 에지영역을 색으로 채울 수 있다. 마지막으로 움직임 물체의 손실된 영역과 플러드 필(flood fill) 알고리즘을 적용한 영상을 합 연산 하여 손실된 영역을 보정한다.

  • PDF

움직임 영역 추출 알고리즘을 이용한 자동 움직임 물체 분할 (Moving Object Segmentation Using Object Area Tracking Algorithm)

  • 이광호;이승익
    • 한국멀티미디어학회논문지
    • /
    • 제7권9호
    • /
    • pp.1240-1245
    • /
    • 2004
  • 본 논문에서는 움직임 영역의 추적 및 움직임 물체의 추출을 위한 알고리즘을 제안한다. 제안한 알고리즘에서는 카메라의 움직임이 고정되어있는 감시카메라나 비디오폰과 같은, 배경이 고정된 시스템으로 가정하였다. 제안된 움직임 영역검색 알고리즘을 이용하여 움직임부분을 먼저 찾은 후, 움직임영역 안에서 다시 움직임 물체만을 분할하는 기법을 제안하였다. 제안한 알고리즘은 노이즈에 대해 보다 강인한 특성을 가지며 움직임영역의 추적 및 추출이 효율적으로 수행되었다.

  • PDF

영상 합성을 위한 실시간 움직임 물체 추출 (Real-Time Moving Object extraction for Superimposition)

  • 김종수;현대환;장성갑;최종수
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 2001년도 제14회 신호처리 합동 학술대회 논문집
    • /
    • pp.367-370
    • /
    • 2001
  • 본 논문에서는 영상 합성을 위해 실시간으로 움직임 물체를 추출하고 움직임 물체의 홀이나 외곽선의 손실을 최소화하고 복원하는 알고리즘을 제안한다. 움직임은 기준영상과 현재 입력된 영상의 차이를 계산함으로써 검출 된다. 따라서 여기서 적당한 기준 영상과 검출 문턱치 방법의 선택이 필요하게 된다. 몇 가지 문턱치 선택 방법들이 연구되었나, 본 논문에서는 회귀적인 문턱치들을 이용한다. 그레이 영상을 통해 구해진 영역에서 칼라 값의 비교를 통해 손실된 영역을 복구하고 최종 실루엣 영상을 얻는다. 얻어진 움직임 물체의 실루엣 영상은 영상 합성에 이용한다.

  • PDF

자동 변형 모델을 이용한 다중 물체 검출 및 추적 (A Multiple Object Detection and Tracking Using Automatic Deformable Model)

  • 우장명;김성동;최기호
    • 한국멀티미디어학회:학술대회논문집
    • /
    • 한국멀티미디어학회 2003년도 추계학술발표대회(상)
    • /
    • pp.290-293
    • /
    • 2003
  • 다중 물체 추적은 움직이는 물체를 추출하고 검출된 정보와 물체 정보를 이용하여 움직임 궤도률 추적하는 것이다. 따라서 정확한 움직임 추적이 수행되려면 효율적인 물체의 추출이 선행 되어 져야 한다. 일반적으로 영상 분할 알고리즘은 다양한 증류의 영상에 대한 물체의 수학적 모델이 찌대로 설정되어 있지 않기 때문에 물체를 정확하게 분리해 내기 어렵다. 그러나 물체의 추출에 주로 처리 속도가 빠른 배경영상을 이용한 차(difference) 영상 기법과 반 자동 영상분할인 Snake Model이 갖는 Active Contour 알고리즘과 같이 물체 추출 과정에서 물체의 정의니 semantic 정보를 부여 한다면 개선된 영상 분할의 결과를 얻을 수 있다. 따라서 차 영상 기법과 semantic 정보를 가진 영상분할 알고리즘은 동영상에서 움직임 물체의 VOP(Video Object Plane)를 생성하는 매우 현실적인 방법이다. 본 논문에서는 영상의 상위 레벨Semantic 정보를 이용하기 위해 변형 Snake Model를 이용한 영상분할 방법을 이용하여 영상을 추출한다. 추출된 물체는 윤곽선(곡선) 정보와 함께 에지 성분의 기울기에서 얻은 특징 점을 이용하여 물체를 추적해 나간다.

  • PDF

강건 예측과 군집화를 결합한 물체의 움직임 감지 (Object Movement Detection Integrating Robust Estimation and Clustering)

  • 장석우;허문행;이상훈
    • 한국컴퓨터정보학회:학술대회논문집
    • /
    • 한국컴퓨터정보학회 2011년도 제43차 동계학술발표논문집 19권1호
    • /
    • pp.257-260
    • /
    • 2011
  • 본 논문에서는 비디오 데이터로부터 물체의 초기 움직임 영역을 자동으로 검출하는 방법을 소개한다. 제안하는 시스템은 먼저 입력 영상을 받아들인 후 인접된 영상으로부터 일정 크기의 정방향의 블록 단위로 움직임을 나타내는 모션 벡터를 추출한다. 그리고 추출된 모션벡터를 아웃라이어를 제거하는 강건 예측 알고리즘에 적용하여 배경에 해당하는 모션벡터와 잡음 및 움직이는 물체에 해당하는 모션벡터를 구분한다. 그런 다음, 군집화 알고리즘을 적용하여 이동하는 물체를 나타내는 모션벡터를 군집화하고, 군집화된 모션벡터에 해당하는 영역의 크기가 일정 수치 값 이상일 때 움직이는 물체가 감지되었다고 판단한다. 본 논문의 실험에서는 제안된 물체의 움직임 감지 방법이 기존의 방법에 비해 성능이 보다 우수함을 보인다.

  • PDF

지능형 영상 감시 시스템을 위한 다수의 네트워크 카메라를 이용한 협동 추적 (Collaborative Tracking Algorithm for Intelligent Video Surveillance Systems Using Multiple Network Cameras)

  • 이덕용;전형석;주영훈
    • 한국지능시스템학회논문지
    • /
    • 제21권6호
    • /
    • pp.743-748
    • /
    • 2011
  • 본 논문에서는 지능형 영상 감시 시스템을 위한 다수의 네트워크 카메라를 이용한 협동 추적 알고리즘을 제안한다. 이를 위하여 각의 카메라는 모션 템플릿 기법을 통하여 영상내의 움직임 물체를 추출하고, 추출된 움직임 물체의 이동방향을 추정한다. 움직임 물체가 추출되면 칼만 필터를 이용하여 움직임 물체의 정확한 좌표를 추정한다. 움직임 물체의 이동방향과 카메라의 상태를 이용하여 가장 효율적인 협동추적 카메라를 선정하고, 각 카메라의 공간정보를 이용하여 PTZ 변수를 설정하고 협동요청을 한다. 협동요청을 받은 카메라는 설정된 PTZ 변수를 이용하여 움직임 물체를 협동 추적하고 확대영상을 획득한다. 실험을 통하여 제안된 협동추적 알고리즘의 성능분석 및 그 응용 가능성을 확인한다.

실시간영상에서의 움직임 검출 및 추적구현에 관한 연구 (Implementation of motion detection and tracking in the real-time image.)

  • 김남우;허창우
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국정보통신학회 2014년도 추계학술대회
    • /
    • pp.729-732
    • /
    • 2014
  • 본 논문에서는 실시간 영상에서 움직임 검출 및 추적에 관련한 기본 기술들을 나열하고 구현하여 구현 가능성 및 성능에 대하여 검증을 진행하였다. 움직임 검출에는 배경 차영상 기법에 의한 움직임 및 변화 영역 검출 방법과 움직임 히스토리에 의한 움직임 검출법, 광류에 의한 움직임 검출법이 있으며 이를 구현하여 검증하였다. 또한 움직임 추적의 경우에는 추적하려는 물체의 히스토그램의 역투영을 이용하면서 물체의 중심점을 추적하는 MeanShift와 물체의 중심, 크기, 방향을 함께 추적하는 CamShift가 있고 Kalman 필터에 의한 움직임 추적을 구현하여 검증하였다. 구현된 방법을 통하여 보안용의 영상감시 장비의 추적 시스템 및 GPS 좌표를 기반으로하여 비행체를 추적하면서 통신링크를 유지하는 추적안테나 시스템에 적용하므로서 제어의 정확도를 높일 수 있다.

  • PDF

비디오 영상에서 지역적 움직임 특성을 표현할 수 있는 기술자 (A Descriptor for Characteristics of Local Motion in a Video)

  • 김형준;김회율
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 2000년도 제13회 신호처리 합동 학술대회 논문집
    • /
    • pp.359-362
    • /
    • 2000
  • 본 논문에서는 비디오 영상에서 지역적 움직임 특성을 표현할 수 있는 지역적 움직임 활동(motion activity)에 관한 기술자(descriptor)를 제안한다. 제안된 방법은 화면 전체에 대해 지역적으로 높은 움직임 활동 정도를 갖는 영역에 대한 공간적 정보를 기술하고, 카메라 움직임에 무관하게 물체의 움직임 활동 특성을 정확히 표현하기 위해 움직임 벡터의 통계적 특성과 화면 분할을 이용한다 본 논문에서 제안하는 움직임 활동의 공간적 특성을 이용하면 동영상에서 화면의 일부에서 일어나는 움직임을 이용한 검색이 가능하고, 물체 추적, 감시 시스템에서도 활용이 가능하다. 실험으로 제안한 방법을 이용해서 움직임 활동이 높은 영역의 추출과정을 보이고, 이를 이용한 검색 결과를 보인다.

  • PDF

에지 및 적응적 임계값을 이용한 움직이는 물체 및 정적 물체의 분할 (Moving and Non-Moving Objects Segmentation Using Edge and Adaptive Thresholding)

  • 손재식;김주영;이승익;김덕규
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 2003년도 하계종합학술대회 논문집 Ⅳ
    • /
    • pp.2387-2390
    • /
    • 2003
  • 움직이는 물체의 자동 분할은 컴퓨터 비젼의 여러 응용분야에서 중요한 문제로 대두되고 있다. 본 논문에서는 감시 시스템에서 에지와 적응적 임계값을 이용한 효과적인 자동 움직임 분할 방법을 제안하였다. 먼저 연속 영상에서 현재 영상과 배경 영상과의 차를 얻어서 그 히스토그램을 만든다. 이 때 앞에서 얻은 히스토그램은 영상 잡음의 평균이 0 인 가우시안 분포를 가진다고 가정한다. 그리고, 이 히스토그램을 이용하여 영상잡음의 분산을 찾는다 이 분산 값을 이용하여 적응적 임계값과 움직임 영역창을 결정한다. 적응적 임계값에 의한 결과 영상에서 움직이는 물체를 분할하기 위해 본 논문에서는 움직임 영역창을 이용하는 방법을 제안하였다. 이 움직임 영역창에 의해 더욱 효과적인 움직임 분할이 이루어진다. 또, 잡음의 제거를 위해 수학적 모폴로지(mathematical morphology)와 화소의 연결성이 이용된다.

  • PDF