나날이 발전하고 있는 ICT 기술과 차량과의 융합은 차량을 대상으로 하는 사이버 위협과 공격을 더욱 증대시킨다. 그러나 차량 보안을 연구하는 산업계, 학계 연구 그룹들 또한 다양한 접근 방법을 통해 이러한 위협과 공격을 앞서 예방하고 탐지하기 위해 노력하고 있다. 2018 정보보호 R&D 데이터 챌린지에서는 차량주행 데이터기반 도난탐지 트랙을 마련하였다. 이는 운전자별 주행 데이터에 대한 분석을 통해 현재 주행 중인 운전자를 식별하는 챌린지로써 국내 및 해외에서 처음으로 진행된 트랙이다. 이번 2018 정보보호 R&D 데이터 챌린지 중 차량주행 데이터기반 도난탐지 트랙에 참가한 참가자들은 주행 데이터를 통계적 기반으로 분석하여 모델링 하였으며, 분석하는 과정에 있어 의미 있는 분류 결과를 도출해 내었다. 일반적으로, 한 가정이 보유하고 있는 차량이 가족들 이외 다른 이들에게는 잘 공유되지 않는다는 점을 고려한다면, 비록 소수의 운전 참가자이지만 5명을 대상으로 하는 본 실험이 의미가 있다고 본다. 이번 정보보호 R&D 데이터 챌린지를 통해, 운전자 주행 데이터가 도난 탐지를 위한 운전자 분류뿐만 아니라, 운전자에게 특화된 의료와 보험과 같은 맞춤형 서비스를 제공할 수 있는 가능성을 확인할 수 있었다.
운전자의 편의성 및 안정성 향상을 위해, 차량에 탑재되는 다양한 센서 및 전자제어장치들은 주행 중 많은 양의 데이터들을 생성한다. 이렇게 생성된 많은 양의 데이터들의 분석은 개인화 서비스, 자동차 보험, 사고 예측와 같은 곳에 활용되고 있다. 최근 주행 중의 다양한 데이터 종류와 머신러닝 및 딥러닝 기반의 방법론을 통해 차량의 운전자를 식별하는 연구들이 진행되고 있다. 본 고에서는 차량에서의 데이터 분석에 기반한 운전자 식별 연구 동향을 설명하도록 하겠다.
The Journal of The Korea Institute of Intelligent Transport Systems
/
v.16
no.4
/
pp.153-163
/
2017
This research is based on the previous research that personally preferred safe distance, rotating angle and speed are differentiated. Thus, we use machine learning model for recognizing maneuvering modes trained per personal or per similar driving pattern groups, and we evaluate automatic driving according to maneuvering modes. By utilizing driving knowledge, we subdivided 8 kinds of longitudinal modes and 4 kinds of lateral modes, and by combining the longitudinal and lateral modes, we build 21 kinds of maneuvering modes. we train the labeled data set per time stamp through RNN, LSTM and Bi-LSTM models by the trips of drivers, which are supervised deep learning models, and evaluate the maneuvering modes of automatic driving for the test data set. The evaluation dataset is aggregated of living trips of 3,000 populations by VTTI in USA for 3 years and we use 1500 trips of 22 people and training, validation and test dataset ratio is 80%, 10% and 10%, respectively. For recognizing longitudinal 8 kinds of maneuvering modes, RNN achieves better accuracy compared to LSTM, Bi-LSTM. However, Bi-LSTM improves the accuracy in recognizing 21 kinds of longitudinal and lateral maneuvering modes in comparison with RNN and LSTM as 1.54% and 0.47%, respectively.
Proceedings of the Korean Society of Computer Information Conference
/
2012.01a
/
pp.7-10
/
2012
본 논문에서는 스마트폰을 이용하여 도로 주행 정보를 기록하고 운전자에게 패턴 별 주행정보를 제공하는 라이프로그(Lifelog) 형태의 서비스에 목적을 두고 있다. 운전자의 도로 주행 데이터를 데이터베이스화한 이 정보는 다양하게 이용될 수 있다. 주행 패턴 인식은 이벤트 구간 검출 과정을 통한 패턴 구간을 검출하고 가속도 센서와 방향 센서, 즉 멀티 센서 기반으로 주행패턴을 인식한다. 주행 패턴을 분석 후 시간 정보를 이용하여 촬영된 영상 데이터에서의 패턴 구간 영상을 같이 제공한다. 이렇게 패턴 구간의 센서 스트리밍 정보와 영상을 제공하면 운전자의 운전 성향 및 주행 기록을 분석하는데 이용될 수 있다. 따라서 주행패턴 인식 알고리즘을 프로토타입으로 제안한다.
This paper describes a recursive least-squares based convergent algorithm for driving characteristic classification for personalized autonomous driving. Recently, various researches on autonomous driving technology have been conducted for level 4 fully autonomous driving. In order for commercialization of the autonomous vehicle, personalized autonomous driving is required to minimize passenger's insecureness to the autonomous vehicle. To address this problem. this study proposes mathematical model that represents driving characteristics and recursive least-squares based algorithm that can estimate the defined characteristics. The actual data of two drivers has been used to derive driving characteristics and the hypothesis testing method has been used to classify two drivers. It is shown that the proposed algorithms can derive driving characteristics and classify two drivers reasonably.
This paper presents a human-centered control algorithm for personalized autonomous driving based on the integration of inverse time-to-collision and time headway. In order to minimize the sense of difference between driver and autonomous driving, the human-centered control technology is required. Driving characteristics in case that vehicle drives with the preceding vehicle have been analyzed and reflected to the longitudinal control algorithm. The driving characteristics such as acceleration, inverse time-to-collision, time headway have been analyzed for longitudinal control. The control algorithm proposed in this study has been constructed on Matlab/Simulink environment and the performance evaluation has been conducted by using actual driving data.
Proceedings of the Korean Society of Broadcast Engineers Conference
/
2022.06a
/
pp.330-331
/
2022
자율주행 차량의 운전자는 현재 레벨3에서 탑승하는 운전자에부터 최종적으로 레벨 5단계에서 탑승자로 변화하게 된다. 관련하여 자율주행차량이 운행하는 동안 탑승자는 무엇을 하는지가 중요한 이슈로 대두될 여지가 있다. 탑승자는 뉴스를 읽거나 노래를 부르거나 주변 환경을 감상할 수 있고, 또는 탑승자는 다른 탑승자와 게임을 하거나 대화를 하거나 회의와 의사결정을 내릴 수도 있다. 자율주행차량은 이용자의 활용에 따라 오락공간, 휴식공간, 회의공간으로 트랜스포메이션되는 셈이다. 본 논문은 자율주행차량에서 블록체인 기술 중 하나인 NFT를 활용하여 차량의 탑승자에게 소유권이 있는 생산 데이터에 대해 스마트 계약을 구현하는 방법에 대하여 연구하였다. 자율주행 차량 내에서의 소유권을 표식한 스마트 계약 체결과 향후 적용 운용환경을 연구.개발하였다.
In this research, to get over restrictions of a field expreiment, we modeled a planning road through the 3D Virtual Reality and achieved data about dynamic response related to sector fluctuation and about driver's visual behavior on testers' driving the Driving Simulator Car with Eye Camera. We made constant efforts to reduce the non-reality and side effect of Driving Simulator on maximizing the accord between motion reproduction and virtual reality based on data Driving Simulator's graphic module achieved by dynamic analysis module. Moreover, we achieved data of driver's natural visual behavior using Eye Camera(FaceLAB) that is able to make an expriment without such attaching equipments such as a helmet and lense. In this paper, to evaluate the level of road's safety, we grasp the meaning of the fluctuation of safety that drivers feel according to change of road geometric structure with methods of Driving Simulator and Eye Camera and investigate the relationship between road geometric structure and safety level. Through this process, we suggest the method to evaluate the road making drivers comfortable and pleasant from planning schemes.
Journal of Korea Society of Industrial Information Systems
/
v.17
no.3
/
pp.35-42
/
2012
The database for driving patterns can be utilized in various system such as automatic driving system, driver safety system, and it can be helpful to monitor driving style. Therefore, we propose a driving pattern recognition system in which the sensor streams from a smartphone are recorded and used for recognizing driving events. In this paper we focus on the driving pattern recognition that is an essential and preliminary step of driving style recognition. We divide input sensor streams into 7 driving patterns such as, Left-turn(L), U-turn(U), Right-turn(R), Rapid-Braking(RB), Quick-Start(QS), Rapid-Acceleration (RA), Speed-Bump(SB). To classify driving patterns, first, a preprocessing step for data smoothing is followed by an event detection step. Last the detected events are classified by DTW(Dynamic Time Warping) algorithm. For assisting drivers we provide the classified pattern with the corresponding video stream which is recorded with its sensor stream. The proposed system will play an essential role in the safety driving system or driving monitoring system.
The Journal of The Korea Institute of Intelligent Transport Systems
/
v.21
no.5
/
pp.90-102
/
2022
Currently, in our society with a substantial and increasing fraction of the elderly population, transport safety for elderly drivers is becoming the center of attention. However, deficient data on vehicle crashes in South Korea limits the growth of traffic accident research pertaining to the country. So, we complemented South Korean vehicle crash data by examining USA vehicle crash data, especially the data of Ohio State, and analyzing the influential factors of elderly driver-involved crashes of the State. Subsequently, we suggested a way of improving the South Korean dataset. Notably, our study showed that the influential factors were vehicle speed, posted speed, and following other vehicles too close and provided them in the South Korean dataset.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.