References
- "Volkswagen Group models vulnerable to hackers", Computest, last accessed: '2019.01.30, http://persberichten.deperslijst.com/84335/press-release-volkswagen-group-models-vulnerable-to-hackers.html
- "The Connected Car Ways to get unauthorized access and potential implications", Computest, last accessed: '2019.01.30., https://www.computest.nl/documents/9/The_Connected_Car._Research_Rapport_Computest_april_2018.pdf
- "Experimental Security Assessment of BMW Cars: A Summary Report", Keen security lab, last accessed: '2019.01.30., https://keenlab.tencent.com/en/Experimental_Security_Assessment_of_BMW_Cars_by_KeenLab.pdf
- "정보보호 R&D 데이터 챌린지 2018", last accessed:'2018.01.30., http://datachallenge.kr/
- "Kaggle", last accessed: '2018.01.30., https://www.kaggle.com/
- "NIPS (Neural Information Processing Systems Conference) Competition Track" , last accessed: '2018.01.30, https://nips.cc/Conferences/2018/CompetitionTrack
- "정보보호 R&D 데이터 챌린지 2017", last accessed: '2018.01.30, http://datachallenge.kr/challenge17/
- Enev, M., Takakuwa, A., Koscher, K., & Kohno, T "Automobile driver fingerprinting", Proceedings on Privacy Enhancing Technologies, 1, pp. 34-50.
- Kwak, Byung Il, JiYoung Woo, and Huy Kang Kim "Know your master: Driver profiling-based anti-theft method", 2016 14th Annual Conference on Privacy, Security and Trust. IEEE, pp. 211-218.
- Chen, Dongyao, Kyong-Tak Cho, and Kang G. Shin "Mobile IMUs Reveal Driver's Identity From Vehicle Turns" arXiv preprint, arXiv: 1710.04578