• Title/Summary/Keyword: 운용비용

Search Result 880, Processing Time 0.03 seconds

A Research on the Paradigm of Interaction Based on Attributes (인터렉션 속성에 기초한 인터렉션 범식화 연구)

  • Shan, Shu Ya;Pan, Young Hwan
    • Journal of the Korea Convergence Society
    • /
    • v.12 no.5
    • /
    • pp.127-138
    • /
    • 2021
  • The aim of this study is to demonstrate interaction as a describable field and tries to understand interaction from the perspective of attributes, thus building a theoretical to help interactive designer understand this field by common rule, rather than waste huge time and labor cost on iteration. Since the concept of interaction language has been brought out in 2000, there are varies of related academical studies, but all with defect such as proposed theoretical models are built on a non-uniform scale, or the analyzing perspective are mainly based on researcher's personal experience and being too unobjective. The value of this study is the clustered resource of research which mainly based on academical review. It collected 21 papers researched on interaction paradigm or interaction attributes published since 2000, extracting 19 interaction attribute models which contains 174 interaction attributes. Furthermore, these 174 attributes were re-clustered based on a more unified standard scale, and the two theoretical models summarized from it are respectively focuses on interaction control and interaction experience, both of which covered 6 independent attributes. The propose of this theoretical models and the analyzation of the cluster static will contribute on further revealing of the importance of interaction attribute, or the attention interaction attribute has been paid on. Also, in this regard, the interactive designer could reasonably allocate their energy during design process, and the future potential on various direction of interaction design could be discussed.

Optimal Design Standard and Application of Low Cost, High Performance Scrubber for Absorbing Hazardous Gas (유해가스 흡수처리를 위한 저비용 고효율 스크러버의 최적 설계기준 및 현장적용 방안)

  • Jung, Ga-Young;Lim, Kyung-Min;Ma, Byung-Chol
    • Journal of the Korean Institute of Gas
    • /
    • v.25 no.3
    • /
    • pp.39-45
    • /
    • 2021
  • Scrubbers that treat hazardous materials at workplaces have high treatment efficiency; however, the design is complex, and pumps need to be operated 24 hours a day, which can be costly. Therefore, to minimize the operating costs, small businesses do not install scrubbers, or operate them while circulation pumps are suspended. Hence, this study investigated the application of low-cost, high-performance scrubbers that can be used economically in small businesses. Low-cost, high-efficiency scrubbers are applied to bubble columns to utilize devices for hazardous chemical absorption treatment purposes, and for the development of these scrubbers, absorption performance was reviewed and the optimal application method was studied under certain conditions. The changes in the absorption performance of hazardous gas were studied in certain environments by varying the physical conditions, and the optimal application methods were analyzed. The results showed that, while it was possible to treat some of the gas flowing into the low cost, high performance scrubber, the treatment capacity was reduced. Performance degradation was prevented by supplying an absorption liquid, and a certain level of absorption was maintained depending on the amount of circulation. Based on this, three types of site application methods of low cost, high performance scrubbers were presented. In addition, the appropriate timing of circulation and anti freezing measures were also discussed.

Resource Clustering Simulator for Desktop Virtualization Based on Intra Cloud (인트라 클라우드 기반 데스크탑 가상화를 위한 리소스 클러스터링 시뮬레이터)

  • Kim, Hyun-Woo
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.8 no.1
    • /
    • pp.45-50
    • /
    • 2019
  • With the gradual advancement of IT, passive work processes are automated and the overall quality of life has greatly improved. This is made possible by the formation of an organic topology between a wide variety of real-life smart devices. To serve these diverse smart devices, businesses or users are using the cloud. The services in the cloud are divided into Infrastructure as a Service (IaaS), Platform as a Service (PaaS) and Software as a Service (SaaS). SaaS runs on PaaS, and PaaS runs on IaaS. Since IaaS is the basis of all services, an algorithm is required to operate virtualization resources efficiently. Among them, desktop resource virtualization is used for resource high availability of unused state time of existing desktop PC. Clustering of hierarchical structures is important for high availability of these resources. In addition, it is very important to select a suitable algorithm because many clustering algorithms are mainly used depending on the distribution ratio and environment of the desktop PC. If various attempts are made to find an algorithm suitable for desktop resource virtualization in an operating environment, a great deal of power, time, and manpower will be incurred. Therefore, this paper proposes a resource clustering simulator for cluster selection of desktop virtualization. This provides a clustering simulation to properly select clustering algorithms and apply elements in different environments of desktop PCs.

Improvement of Access Control at Partially Grade-Separated Intersection (단순입체교차 도로의 진출입로 설치 금지구간 개선방안)

  • Kim, Young-Jin;Kim, Jin-Uk
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.12
    • /
    • pp.725-733
    • /
    • 2018
  • With urbanization projects involving trunk roads progressing, many simple interchanges, which separate passing traffic into the main traffic and access subtraffic, are being constructed to maximize the traffic capacity. Under the current Road Connection Rule, the access-prohibited section in an interchange is determined based on the access lane and limit distance in the complete interchange road, but separate criteria for the simple interchange are not defined. This may cause confusion in the Road Management Office's determination of the access-prohibited section in the simple interchange, or lead to the application of the criteria for the access-prohibited section in the complete interchange without considering the features of such interchange. This study conducted a comparative analysis of the domestic and overseas systems related to the installation of access section in trunk roads, such as general national roads. This paper presents a survey of the methods for applying the access-prohibited section in the interchange along with the actual cases and proposes improvement measures for a rational calculation of the access prohibited installation section in the simple interchange to minimize the downsides associated with the application of the extremely strict criteria. The proposed road connection rule improvement measures based on the consideration of the purpose of installing the simple interchange and on the consideration the features of the simple interchange are expected to prevent administration confusion by the field road management offices as well as the waste of unnecessary efforts and costs by petitioners so they can boost the service satisfaction for people and the administrative reliability.

Performance Analysis of Automatic Target Recognition Using Simulated SAR Image (표적 SAR 시뮬레이션 영상을 이용한 식별 성능 분석)

  • Lee, Sumi;Lee, Yun-Kyung;Kim, Sang-Wan
    • Korean Journal of Remote Sensing
    • /
    • v.38 no.3
    • /
    • pp.283-298
    • /
    • 2022
  • As Synthetic Aperture Radar (SAR) image can be acquired regardless of the weather and day or night, it is highly recommended to be used for Automatic Target Recognition (ATR) in the fields of surveillance, reconnaissance, and national security. However, there are some limitations in terms of cost and operation to build various and vast amounts of target images for the SAR-ATR system. Recently, interest in the development of an ATR system based on simulated SAR images using a target model is increasing. Attributed Scattering Center (ASC) matching and template matching mainly used in SAR-ATR are applied to target classification. The method based on ASC matching was developed by World View Vector (WVV) feature reconstruction and Weighted Bipartite Graph Matching (WBGM). The template matching was carried out by calculating the correlation coefficient between two simulated images reconstructed with adjacent points to each other. For the performance analysis of the two proposed methods, the Synthetic and Measured Paired Labeled Experiment (SAMPLE) dataset was used, which has been recently published by the U.S. Defense Advanced Research Projects Agency (DARPA). We conducted experiments under standard operating conditions, partial target occlusion, and random occlusion. The performance of the ASC matching is generally superior to that of the template matching. Under the standard operating condition, the average recognition rate of the ASC matching is 85.1%, and the rate of the template matching is 74.4%. Also, the ASC matching has less performance variation across 10 targets. The ASC matching performed about 10% higher than the template matching according to the amount of target partial occlusion, and even with 60% random occlusion, the recognition rate was 73.4%.

DNN Model for Calculation of UV Index at The Location of User Using Solar Object Information and Sunlight Characteristics (태양객체 정보 및 태양광 특성을 이용하여 사용자 위치의 자외선 지수를 산출하는 DNN 모델)

  • Ga, Deog-hyun;Oh, Seung-Taek;Lim, Jae-Hyun
    • Journal of Internet Computing and Services
    • /
    • v.23 no.2
    • /
    • pp.29-35
    • /
    • 2022
  • UV rays have beneficial or harmful effects on the human body depending on the degree of exposure. An accurate UV information is required for proper exposure to UV rays per individual. The UV rays' information is provided by the Korea Meteorological Administration as one component of daily weather information in Korea. However, it does not provide an accurate UVI at the user's location based on the region's Ultraviolet index. Some operate measuring instrument to obtain an accurate UVI, but it would be costly and inconvenient. Studies which assumed the UVI through environmental factors such as solar radiation and amount of cloud have been introduced, but those studies also could not provide service to individual. Therefore, this paper proposes a deep learning model to calculate UVI using solar object information and sunlight characteristics to provide an accurate UVI at individual location. After selecting the factors, which were considered as highly correlated with UVI such as location and size and illuminance of sun and which were obtained through the analysis of sky images and solar characteristics data, a data set for DNN model was constructed. A DNN model that calculates the UVI was finally realized by entering the solar object information and sunlight characteristics extracted through Mask R-CNN. In consideration of the domestic UVI recommendation standards, it was possible to accurately calculate UVI within the range of MAE 0.26 compared to the standard equipment in the performance evaluation for days with UVI above and below 8.

Design of Common DLI Message Module based on API for the System based on Construction of the Korean Unmanned Aerial Vehicle Interface Protocol (한국형 무인항공기 연동 프로토콜 기반 시스템 구축을 위한 API 기반 공통 DLI 메시지 모듈 설계)

  • Taewon Kim;Sinjoo Lee;Dongho, Lee;Younggon, Kim
    • Journal of Platform Technology
    • /
    • v.10 no.4
    • /
    • pp.25-38
    • /
    • 2022
  • Recently, it is reported that the Korean Unmanned Aerial Vehicle (UAV) interface protocol (K-4586) based on STANAG-4586 is being developed to secure interoperability between UAVs. The core elements of the K-4586-based Unmanned Aircraft System (UAS) are the Core UAV Control System (CUCS), Vehicle Specific Module (VSM), Data Link Interface (DLI), and C4I systems. In UAS based on K-4586, the DLI function for transmitting and receiving messages to link UAVs is included in VSM and CUCS respectively. The Generator/Analyzer (G/A) tool is an apparatus that is developed for protocol conformance verification for VSM and CUCS, and G/A tools with DLI message transmitting and receiving should be developed separately. Core applications (VSM, CUCS, DLI) and G/A tools based on K-4586 may be developed independently depending on the developers. If the DLI message modules are different for each developer, the scope and results of protocol conformance verification will be dissimilar, and some problems may happen during system integration. In this study, common DLI message module based on the API was designed to provide the DLI message transmitting and receiving function necessary to the development of core applications and the protocol conformance verification tool of based on K-4586. When applying the proposed common DLI message module, it can be expected to shorten the UAS system development period and reduce costs, and ensure conformance of protocol. In this paper, the design and implementation method for the common DLI message module based on API was proposed and the results of functional test was described.

Conceptual Design of a LOX/Methane Rocket Engine for a Small Launcher Upper Stage (소형발사체 상단용 액체메탄 로켓엔진의 개념설계)

  • Kim, Cheulwoong;Lim, Byoungjik;Lee, Junseong;Seo, Daeban;Lim, Seokhee;Lee, Keum-Oh;Lee, Keejoo;Park, Jaesung
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.26 no.4
    • /
    • pp.54-63
    • /
    • 2022
  • A 3-tonf class liquid rocket engine that powers the upper stage of a small launcher and lifts 500 kg payload to 500 km SSO is designed. The small launcher is to utilize the flight-proven technology of the 75-tonf class engine for the first stage. A combination of liquid oxygen and liquid methane has been selected as their cryogenic states can provide an extra boost in specific impulse as well as enable a weight saving via the common dome arrangement. An expander cycle is chosen among others as the low-pressure operation makes it robust and reliable while a specific impulse of over 360 seconds is achievable with the nozzle extension ratio of 120. Key components such as combustion chamber and turbopump are designed for additive manufacturing to a target cost. The engine system provides an evaporated methane for the autogenous pressurization system and the reaction control of the stage. This upper stage propulsion system can be extended to various missions including deep space exploration.

A study on the analysis of current status of Seonakdong River algae using hyperspectral imaging (초분광영상을 이용한 서낙동강 조류 발생현황 분석에 관한 연구)

  • Kim, Jongmin;Gwon, Yeonghwa;Park, Yelim;Kim, Dongsu;Kwon, Jae Hyun;Kim, Young Do
    • Journal of Korea Water Resources Association
    • /
    • v.55 no.4
    • /
    • pp.301-308
    • /
    • 2022
  • Algae is an indispensable primary producer in the ecosystem by supplying energy to consumers in the aquatic ecosystem, and is largely divided into green algae, blue-green algae, and diatoms. In the case of blue-green algae, the water temperature rises, which occurs in the summer and overgrows, which is the main cause of the algae bloom. Recently, the change in the occurrence time and frequency of the algae bloom is increasing due to climate change. Existing algae survey methods are performed by collecting water and measuring through sensors, and time, cost and manpower are limited. In order to overcome the limitations of these existing monitoring methods, research has been conducted to perform remote monitoring using spectroscopic devices such as multispectral and hyperspectral using satellite image, UAV, etc. In this study, we tried to confirm the possibility of species classification of remote monitoring through laboratory-scale experiments through algal culture and river water collection. In order to acquire hyperspectral images, a hyperspectral sensor capable of analyzing at 400-1000 nm was used. In order to extract the spectral characteristics of the collected river water for classification of algae species, filtration was performed using a GF/C filter to prepare a sample and images were collected. Radiation correction and base removal of the collected images were performed, and spectral information for each sample was extracted and analyzed through the process of extracting spectral information of algae to identify and compare and analyze the spectral characteristics of algae, and remote sensing based on hyperspectral images in rivers and lakes. We tried to review the applicability of monitoring.

A Study on the Thermal Prediction Model cf the Heat Storage Tank for the Optimal Use of Renewable Energy (신재생 에너지 최적 활용을 위한 축열조 온도 예측 모델 연구)

  • HanByeol Oh;KyeongMin Jang;JeeYoung Oh;MyeongBae Lee;JangWoo Park;YongYun Cho;ChangSun Shin
    • Smart Media Journal
    • /
    • v.12 no.10
    • /
    • pp.63-70
    • /
    • 2023
  • Recently, energy consumption for heating costs, which is 35% of smart farm energy costs, has increased, requiring energy consumption efficiency, and the importance of new and renewable energy is increasing due to concerns about the realization of electricity bills. Renewable energy belongs to hydropower, wind, and solar power, of which solar energy is a power generation technology that converts it into electrical energy, and this technology has less impact on the environment and is simple to maintain. In this study, based on the greenhouse heat storage tank and heat pump data, the factors that affect the heat storage tank are selected and a heat storage tank supply temperature prediction model is developed. It is predicted using Long Short-Term Memory (LSTM), which is effective for time series data analysis and prediction, and XGBoost model, which is superior to other ensemble learning techniques. By predicting the temperature of the heat pump heat storage tank, energy consumption may be optimized and system operation may be optimized. In addition, we intend to link it to the smart farm energy integrated operation system, such as reducing heating and cooling costs and improving the energy independence of farmers due to the use of solar power. By managing the supply of waste heat energy through the platform and deriving the maximum heating load and energy values required for crop growth by season and time, an optimal energy management plan is derived based on this.