• Title/Summary/Keyword: 운송 컨테이너 영상

Search Result 19, Processing Time 0.024 seconds

Character Segmentation from Shipping Container Image using Morphological Operation (형태학적 연산을 이용한 운송 컨테이너 영상의 문자 분할)

  • 김낙빈
    • Journal of Korea Multimedia Society
    • /
    • v.2 no.4
    • /
    • pp.390-399
    • /
    • 1999
  • Extracting the character region(container identifier) in the image of a shipping container is one of the key factors in a system for identifying a shipping container automatically To improve the performance of the automatic recognition system for identifying a shipping container, thus a method partitioning the character region more correctly and efficiently is needed. In this paper, an efficient method is proposed to extract only the character region in the image of a shipping container. The proposed method removes noises that are not possibly related to the character using morphological operation, then the image is binarized using the threshold value that is determined from the image obtained previous step. Finally individual character area is extracted from the binary image. Also experiments are conducted to verify the efficiency of the proposed method. The results show that the proposed method partitions the character region correctly from container images.

  • PDF

A Study on Preprocessing for Efficient Character Recognization of Shipping Container Image (운송 컨테이너 영상의 효율적인 문자인식을 위한 전처리에 관한 연구)

  • Choi, Jae-Young;Kim, Nak-Bin
    • Annual Conference of KIPS
    • /
    • 2000.04a
    • /
    • pp.1077-1083
    • /
    • 2000
  • 본 논문은 운송 컨테이너 식별자의 자동화 처리를 위한 문자 인식의 단계중 최종 문자 인식 전단계 까지의 처리 과정을 컨테이너의 특성에 맞게 제안하였으며, 이러한 전처리 과정은 문자 인식 시스템의 성능에 중요한 영향을 미친다. 제안한 방법은 먼저 입력된 컨테이너 컬러 영상을 명암 영상으로 바꾸고 전체 영상중 인식에 필요한 식별자 영역만을 경계선 검출과 형태학적 연산을 이용하여 추출한다. 이어서 다양한 배경색과 문자색을 판단하여 일반 문서와 같이 일관성있게 통일한 후, DCT를 이용한 명암도별 이진영역으로 분할한 후에 Otsu방법과 새로운 이진화방법을 자동으로 선택하여 효율적인 이진화가 이루어지도록 하였다. 이렇게 얻어진 이진 영상은 문자인식 단계로 넘어갈 수 있도록 개별 문자로 분할한다. 이 방법은 컨테이너 영상의 불균등한 배경색과 잡음으로 인하여 문자인식에 오류가 생기는 단점을 보완하였으며 컨테이너 특성을 최대한 반영함으로써 효과적인 전처리 결과를 얻을 수 있었다. 또한, 제안한 방법의 응용은 컨테이너 이외의 다른 상황에서도 매우 효과적으로 사용될 수 있으리라 본다.

  • PDF

A Study on Identifier Extraction from Shipping Container Image by Using Fuzzy Binarization and Contour Tracking Algorithm (퍼지 이진화와 윤곽선 추적 알고리즘을 이용한 운송 컨데이너 영상의 식별자 추출에 관한 연구)

  • 윤형근;김광백
    • Proceedings of the Korea Inteligent Information System Society Conference
    • /
    • 2003.05a
    • /
    • pp.490-494
    • /
    • 2003
  • 운송 컨테이너의 식별자를 추출하고 인식하는 것은 컨테이너 식별자들의 크기나 위치가 정형화되어 있지 않고 외부의 잡음으로 인하여 식별자의 형태가 훼손되어 있기 때문에 어렵다. 본 논문에서는 이러한 특성을 고려하여 컨테이너 영상에 대해 Canny 마스크를 이용하여 에지를 검출하고, Canny 마스크가 적용된 영상에서 수직·수평 히스토그램을 적용하여 컨테이너의 식별자 영역을 추출한다. 추출된 컨테이너의 식별자 영역을 삼각형 타입의 퍼지 이진화 방법을 적용하여 이진화하고 이진화된 컨테이너 식별자 영역을 윤곽선 추적 알고리즘으로 개별 식별자를 추출한다. 제안된 방법의 성능을 평가하기 위하여 실제 컨테이너 영상에 적용한 결과, 기존의 방법보다 컨테이너의 식별자 추출에서 우수한 성능이 있음을 확인하였다.

  • PDF

The Identifier Recognition from Shipping Container Image by Using Contour Tracking and Enhanced Neural Networks (윤곽선 추적과 개선된 신경망을 이용한 운송 컨테이너 영상의 식별자 인식)

  • 이혜현;김광백
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2002.05a
    • /
    • pp.235-239
    • /
    • 2002
  • 운송 컨테이너의 식별자를 추출하고 인식하는 것은 컨테이너 식별자들의 크기나 위치가 정형화되어 있지 않고 외부의 잡음으로 인하여 식별자의 형태가 훼손되어 있기 때문에 어렵다 된 논문에서는 이러한 특성을 고려하여 컨테이너 영상에 대해 Canny 마스크를 이용하여 에지를 검출하고, 검출된 에지 정보를 이용하여 수직 블록과 수평 블록을 추출하여 컨테이너의 식별자 영역을 추출한다. 추출된 컨테이너의 식별자 영역에서 히스토그램 방법과 윤곽선 추적 알고리즘을 이용하여 개별 식별자를 추출한다. 컨테이너의 개별 식별자 인식은 ART1을 개선하여 지도 학습 방법과 결합한 개선된 신경망을 제안하여 적용한다. 실험 결과에서는 제안된 컨테이너 식별자 추출 린 인식 방법이 다양한 컨테이너 영상에 대해 효율적인 것을 보인다.

  • PDF

Identifiers Extraction of Container Image using Fuzzy Reasoning Rule (퍼지 추론 규칙을 이용한 컨테이너 영상의 식별자 추출)

  • 주이환;김광백
    • Proceedings of the Korea Multimedia Society Conference
    • /
    • 2004.05a
    • /
    • pp.238-242
    • /
    • 2004
  • 운송 컨테이너의 식별자를 추출하는 것은 컨테이너 식별자들의 크기나 위치가 정형화되어 있지 않고 외부의 잡음으로 인하여 식별자의 형태가 훼손되어 있기 때문에 어렵다. 본 논문에서는 이러한 특성을 고려하여 컨테이너 영상에 대해 Canny 마스크를 이용하여 에지를 검출하고, 검출된 에지 정보에서 영상획득 시 외부 광원에 의해 수직으로 길게 발생하는 잡음들을 퍼지추론 방법을 적용하여 제거한 후에 수직 블록과 수평 블록을 검출하여 컨테이너의 식별자 영역을 추출한다. 추출된 컨테이너의 식별자 영역에서 히스토그램 방법과 윤곽선 추적 알고리즘을 각각 이용하여 개별 식별자를 추출한다. 실제 컨테이너 영상을 대상으로 실험 결과, 제안된 컨테이너 식별자 추출 방법이 다양한 컨테이너 영상에 대해 효율적인 것을 확인하였다.

  • PDF

An Enhanced Fuzzy ART Algorithm for The Identifier Recognition from Shipping Container Image (운송 컨테이너 영상의 식별자 인식을 위한 개선된 퍼지 ART 알고리즘)

  • 류재욱;김태경;김광백
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2002.12a
    • /
    • pp.365-369
    • /
    • 2002
  • 퍼지 ART 알고리즘에서 경계 변수는 패턴들을 클러스터링하는데 있어서 반지름 값이 되며 임의의 패턴과 저장된 패턴과의 불일치(mismatch) 허용도를 결정한다. 이 경계 변수가 크면 입력 벡터와 기대 벡터 사이에 약간의 차이가 있어도 새로운 카테고리(category)로 분류하게 핀다. 반대로 경계 변수가 작으면 입력 벡터와 기대 벡터 사이에 많은 차이가 있더라도 유사성이 인정되어 입력 벡터들을 대략적으로 분류한다. 따라서 영상 인식에 적용하기 위해서는 경험적으로 경계 변수를 설정해야 단점이 있다. 그리고 연결 가중치를 조정하는 과정에서 저장된 패턴들의 정보들이 손실되는 경우가 발생하여 인식율을 저하시킨다. 된 논문에서는 퍼지 ART 알고리즘의 문제점을 개선하기 위하여 퍼지 논리 접속 연산자를 이용하여 경계 변수를 동적으로 조정하고 저장 패턴들과 학습 패턴간의 실제적인 왜곡 정도를 충분히 고려하여 승자 노드로 선택된 빈도수를 가중치 조정에 적용한 개선된 퍼지 ART 알고리즘을 제안하였다. 제안된 방법의 성능을 확인하기 위해서 실제 운송 컨테이너 영상들을 대상으로 실험한 결과, 기존의 ART2 알고리즘이나 퍼지 ART 알고리즘보다 클러스터의 수가 적게 생성되었고 인식 성능도 기존의 방법들보다 우수한 성능이 있음을 확인하였다.

Identifier Extraction of Shipping Container Images using Enhanced Binarization and Contour Tracking Algorithm (개선된 이진화와 윤곽선 추적 알고리즘을 이용한 운송 컨테이너의 식별자 추출)

  • Kim Kwang-baek
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.9 no.2
    • /
    • pp.462-466
    • /
    • 2005
  • The extraction and recognition of shipping container's identifier is difficult since the scale or the location of identifiers are not fixed-form and input images have some external noises. In this paper, based on these facts, first, edges are detected from input images using canny masking, and regions of container's Identifiers are extracted by applying horizontal and vertical histogram method to canny masked images. We use a fuzzy thresholding method to binaries the extracted container's identifier regions, and contour tracking algorithm to extract individual identifiers. In experimental results, we confirmed that the proposed method is superior In performance.

Container Recognition System using Fuzzy RBF Network (퍼지 RBF 네트워크를 이용한 컨테이너 인식 시스템)

  • Kim, Jae-Yong;Kim, Kwang-Baek
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • v.9 no.1
    • /
    • pp.497-503
    • /
    • 2005
  • 본 논문에서는 퍼지 RBF 네트워크를 이용한 운송 컨테이너 식별자 인식 시스템을 제안한다. 일반적으로 운송 컨테이너의 식별자들은 크기나 위치가 정형화되어 있지 않고 외부 잡음으로 인하여 식별자의 형태가 변형될 수 있기 때문에 일정한 규칙으로 찾기는 힘들다. 본 논문에서는 이러한 특성을 고려하여 컨테이너 영상에 대해 Canny 마스크를 이용하여 에지를 검출하고, 검출된 에지 정보에서 영상획득 시 외부 광원에 의해 수직으로 길게 발생하는 잡음들을 퍼지 추론 방법을 적용하여 제거한 후에 수직 블록과 수평 블록을 검출하여 컨테이너의 식별자 영역을 추출하고 이진화한다. 이진화된 식별자 영역에 대해 검정색의 빈도수를 이용하여 흰바탕과 민바탕을 구분하고 4방향 윤광선 추적 알고리즘을 적용하여 개별 식별자를 추출한다. 개별 식별자 인식을 위해 퍼지 C-Means 알고리즘을 이용한 퍼지 RBF 네트워크를 제안하여 개별 식별자에 적용한다. 제안된 퍼지 RBF 네트워크는 퍼지 C-Means 알고리즘을 중간층으로 적용하고 중간층과 출력층 간의 학습에는 일반화된 델타 학습 방법과Delta-bar-Delta 알고리즘을 적용하여 학습 성능을 개선한다. 실제 컨테이너 영상을 대상으로 실험한 결과, 기존의 식별자 추출 방법보다 제안된 식별자 추출방법이 개선되었다. 그리고 기존의 ART2 기반 RBF 네트워크보다 제안된 퍼지 RBF 네트워크가 컨테이너 식별자의 학습 및 인식에 있어서 우수함을 확인하였다.

  • PDF

Identifiers Recognition of Container Image using Enhanced Neural Networks (개선된 신경망을 이용한 컨테이너 식별자 인식)

  • Yoon Kyeong-Ho;Jun Tae-Ryong;Kim Kwang-Baek
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2006.05a
    • /
    • pp.291-296
    • /
    • 2006
  • 일반적으로 운송 컨테이너의 식별자들은 크기나 위치가 정형화되어 있지 않고 외부 환경으로 인한 식별자의 형태가 훼손되어 있기 때문에 일정한 규칙으로는 찾기 힘들다. 본 논문에서는 컨테이너 영상에 대해 ART2 알고리즘을 적용하여 컨테이너 영상을 양자화한다. 제안된 ART2 알고리즘 기반 양자화 기법은 컬러정보를 클러스터링 한 후, 각 클러스터의 중심 패턴을 이용하여 원 영상의 컬러정보를 분류한다. 양자화된 컨테이너 영상에서 8 방향 윤곽선 추적 알고리즘을 적용하여 개별 식별자를 추출한다. 추출된 개별 식별자는 ART2 기반 RBF 네트워크를 개선하여 인식에 적용한다. 실제 컨테이너 영상 300장에 대해 실험한 결과, 제안한 컨테이너 식별자 인식 방법의 추출 및 인식 성능이 기존의 컨테이너 식별자 인식 방법 보다 개선된 것을 확인하였다.

  • PDF

The Identifier Recognition from Shipping Container Image by Using Contour Tracking and Self-Generation Supervised Learning Algorithm Based on Enhanced ART1 (윤곽선 추적과 개선된 ART1 기반 자가 생성 지도 학습 알고리즘을 이용한 운송 컨테이너 영상의 식별자 인식)

  • 김광백
    • Journal of Intelligence and Information Systems
    • /
    • v.9 no.3
    • /
    • pp.65-79
    • /
    • 2003
  • In general, the extraction and recognition of identifier is very hard work, because the scale or location of identifier is not fixed-form. And, because the provided image is contained by camera, it has some noises. In this paper, we propose methods for automatic detecting edge using canny edge mask. After detecting edges, we extract regions of identifier by detected edge information's. In regions of identifier, we extract each identifier using contour tracking algorithm. The self-generation supervised learning algorithm is proposed for recognizing them, which has the algorithm of combining the enhanced ART1 and the supervised teaming method. The proposed method has applied to the container images. The extraction rate of identifier obtained by using contour tracking algorithm showed better results than that from the histogram method. Furthermore, the recognition rate of the self-generation supervised teaming method based on enhanced ART1 was improved much more than that of the self-generation supervised learning method based conventional ART1.

  • PDF