• Title/Summary/Keyword: 운동성능

Search Result 976, Processing Time 0.028 seconds

A Study on Modelling and Tracking Control System Design of RTGC(Rubber-Tired Gantry Crane) (RTGC의 모델링 및 주행제어기 설계에 관한 연구)

  • Jeong, Ji-Hyun;Lee, Dong-Seok;Jeong, Jeong-Soon;Kim, Young-Bok
    • Journal of Navigation and Port Research
    • /
    • v.34 no.6
    • /
    • pp.479-485
    • /
    • 2010
  • To handle container effectively is one of the most important factors in a port because working time is linked soon into cost. Since the middle of 1990s, RMGC(Rail-Mounted Gantry Crane) and RTGC(Rubber-Tired Gantry Crane) have been developed and widely used to operate containers in the yard. The RTGC is more difficult than RMGC in the automatic control system design. Although, the RTGC is largely advantaged to free driving environment, it has some considerable disadvantages in the system operating. In general, the problems are due to tire slip and lack of tire pressure etc. Therefore, a desirable research result has not been shown in this time. So, in this paper, we propose a new approach to design tracking control system for the RTGC in which the mathematical modeling is included. From the simulation results, the control performance of the designed control systems is evaluated.

Application of neural network for airship take-off and landing mode by buoyancy control (기낭 부력 제어에 의한 비행선 이착륙의 인공신경망 적용)

  • Chang, Yong-Jin;Woo, Gui-Ae;Kim, Jong-Kwon;Lee, Dae-Woo;Cho, Kyeum-Rae
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.33 no.2
    • /
    • pp.84-91
    • /
    • 2005
  • For long time, the takeoff and landing control of airship was worked by human handling. With the development of the autonomous control system, the exact controls during the takeoff and landing were required and lots of methods and algorithms were suggested. This paper presents the result of airship take-off and landing by buoyancy control using air ballonet volume change and performance control of pitch angle for stable flight within the desired altitude. For the complexity of airship's dynamics, firstly, simple PID controller was applied. Due to the various atmospheric conditions, this controller didn't give satisfactory results. Therefore, new control method was designed to reduce rapidly the error between designed trajectory and actual trajectory by learning algorithm using an artificial neural network. Generally, ANN has various weaknesses such as large training time, selection of neuron and hidden layer numbers required to deal with complex problem. To overcome these drawbacks, in this paper, the RBFN (radial basis function network) controller developed. The weight value of RBFN is acquired by learning which to reduce the error between desired input output through and airship dynamics to impress the disturbance. As a result of simulation, the controller using the RBFN is superior to PID controller which maximum error is 15M.

Mono-Vision Based Satellite Relative Navigation Using Active Contour Method (능동 윤곽 기법을 적용한 단일 영상 기반 인공위성 상대항법)

  • Kim, Sang-Hyeon;Choi, Han-Lim;Shim, Hyunchul
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.43 no.10
    • /
    • pp.902-909
    • /
    • 2015
  • In this paper, monovision based relative navigation for a satellite proximity operation is studied. The chaser satellite only uses one camera sensor to observe the target satellite and conducts image tracking to obtain the target pose information. However, by using only mono-vision, it is hard to get the depth information which is related to the relative distance to the target. In order to resolve the well-known difficulty in computing the depth information with the use of a single camera, the active contour method is adopted for the image tracking process. The active contour method provides the size of target image, which can be utilized to indirectly calculate the relative distance between the chaser and the target. 3D virtual reality is used in order to model the space environment where two satellites make relative motion and produce the virtual camera images. The unscented Kalman filter is used for the chaser satellite to estimate the relative position of the target in the process of glideslope approaching. Closed-loop simulations are conducted to analyze the performance of the relative navigation with the active contour method.

Numerical Analysis on Stress Distribution of Vertebra and Stability of Intervertebral Fusion Cage with Change of Spike Shape (척추체간 유합케이지의 스파이크형상 변화에 따른 척추체의 응력분포 및 케이지의 안정성에 대한 수치적 해석)

  • 심해영;김철생;오재윤
    • Journal of Biomedical Engineering Research
    • /
    • v.25 no.5
    • /
    • pp.361-367
    • /
    • 2004
  • The axial compressive strength, relative 3-D stability and osteoconductive shape design of an intervertebral fusion cage are important biomechanical factors for successful intervertebral fusion. Changes in the stress distribution of the vertebral end plate and in cage stability due to changes in the spike shape of a newly contrived box-shaped fusion cage are investigated. In this investigation, the initial contact of the cage's spikes with the end plate and the penetration of the cage's spikes into the end plate are considered. The finite element analysis is conducted to study the effects of the cage's spike height, tip width and angle on the stress distribution of the vertebral end plate, and the micromigration of the cage in the A-P direction. The stress distribution in the end plate is examined when a normal load of 1700N is applied to the vertebra after inserting 2 cages. The micromigration of the cage is examined when a pull out load of l00N is applied in the A-P direction. The analysis results reveal that the spike tip width significantly influences the stress concentration in the end plate, but the spike height and angle do not significantly influence the stress distribution in the end plate touching the cage's spikes. In addition, the analysis results show that the micromigration of the cage can be reduced by adjusting the spike angle and spike arrangement in the A-P direction. This study proposes the optimal shape of an intervertebral fusion cage, which promotes bone fusion, reduces the stress concentration in a vertebral end plate, and increases mechanical stability.

A Study on the Effect of Rudder Area with Reference to Changes in Span Distance on Course Stability of a Ship (타의 스팬길이에 따른 면적 변화가 침로안정성에 미치는 영향에 관한 연구)

  • Sohn, K.H.;Lee, G.W.;Kim, H.S.;Kim, Y.S.;Ha, M.K.
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.33 no.4
    • /
    • pp.1-14
    • /
    • 1996
  • Especially in the case of a full form ship, the stability on course can be considered to become severest among 4 items of criteria in Interim Standards for Ship Maneuverability adopted by IMO in 1993. The purpose of this study is to find some ideas for the improvement of stability on course through changes in rudder area with reference to span distance. In this paper, we established the formula on the relation between the experimental constants relevant to rudder normal force and hydrodynamic derivatives of hull-propeller-rudder system. We carried out various kinds of captive model test relevant to rudder normal force etc., and evaluated hydrodynamic derivatives of hull-propeller-rudder system, and analyzed the stability on course with the parameter of changes in rudder area. Furthermore, we also discussed effects of changes in rudder area on maneuvering performance including stability on course, based on computer simulation. As a result, it is clarified that there is a possibility that stability on course may become bad through an increase of rudder area. The reason for the bad stability on course is that the void space between the upper edge of rudder and the lower part of stern overhang decreases. This space change exerts a great influence on straightening coefficient of incoming flow to rudder in maneuvering motion, which has close relation to stability on course.

  • PDF

Simulation of Noise and Vibration around the Improved Turnout System (개량분기기 인근의 소음진동 시뮬레이션)

  • Eum, Ki-Young;Um, Ju-Hwan;Lee, Chin-Hyung
    • Journal of the Korea Society for Simulation
    • /
    • v.15 no.4
    • /
    • pp.119-128
    • /
    • 2006
  • A turnout system which permits trains to pass from one track to another is a combination of the switch, the crossing, lead rails which are necessary to connect the switch and the crossing, two guard rails and a switch machine for operating the switch. A turnout is the sole moving part among the railway components and has complex configuration, so the safety has always been raised an issue. In Korea, it is planned to adopt the high speed tilting train, which operates at the maximum speed of 200km/h, at conventional lines by the year of 2010. However, for the application of the tilting train to conventional lines, it is prerequisite to establish a stable turnout system allowing the tilting train to pass through it without reducing speed. Therefore, the improved turnout system for the speed-up of conventional lines has been developed and the prototype of the turnout system has been constructed. In this study, simulation of noise and vibration around the improved turnout system was performed in order to predict the generation level of noise and vibration due to passing of the tilting train through the turnout system.

  • PDF

Preparation and Pervaporative Alcohol Dehydration of Crystallographically b/c-axis Oriented Mordenite Zeolite Membranes (결정학적으로 b/c-축 방향으로 배향된 모데나이트 제올라이트 분리막의 제조 및 투과증발 알코올 탈수 거동)

  • Kim, Young-Mu;Lee, Du-Hyoung;Kim, Min-Zy;Cho, Churl-Hee
    • Membrane Journal
    • /
    • v.28 no.5
    • /
    • pp.340-350
    • /
    • 2018
  • In the present study, crystallographically b- and c-axis oriented mordenite zeolite membranes were prepared and their pervaporative ethanol dehydration was investigated. The seed layer with a high coverage grew to be c-axis oriented dense layer, while the seed layer with a low coverage grew to be b-axis oriented layer. This phenomenon could be explained by the evolutionary selection growth mechanism. The b-axis grown membrane with 8-membered rings showed a high separation factor of above 1000 and a considerable total flux of around $0.2kg/m^2h$. The c-axis grown, columnar structured membrane with 8- and 12-membered rings showed a low separation factor of less than 200 and a relatively high total flux of around $0.25kg/m^2h$. The high performance of b-axis grown membrane was due to the relatively small opening of 8-membered rings. Water molecules can freely permeate through the openings, but ethanol molecules, difficultly. Therefore, in the present study, we introduced a new method to control crystallographic orientation of mordenite membrane by changing seeding amount of needle-like crystals, and elucidated that b-axis oriented mordenite membrane showed better performance than c-axis grown mordenite membrane.

Development of Individually Adapted Electromagnetic Therapy System in Incontinence (환자 맞춤형 전자기장 요실금 치료 시스템 개발)

  • Noh, Si-Cheol;Kang, Kyu-Hong;Lee, Jeong-Seok;Min, Kwon-Sik;Kwon, Jang-Woo;Choi, Heung-Ho
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.45 no.4
    • /
    • pp.51-59
    • /
    • 2008
  • Incontinence is the urination disorder as the leakage of urine without her own volition and the woman's representative disease which reduce the life quality. The electromagnetic therapy has high possibility of development cause it has no needs of operant exercise, no arousing of shame and impossibility of infection. But, it has improvement points such as uniformity of the treatment protocol, patient dependance and absent of patient monitoring system. With these demands, the system which stimulate the pelvic flaw muscle with electromagnetic and monitoring the patient status during the therapy is proposed, in this study. And individually adapted electromagnetic therapy system for incontinence patient is also suggested. The proposed system consisted of electromagnetic generation device, cooling device, treating chair, patient monitoring device with pulsation and control software. The simulation for high power system and evaluation confirm was performed. With the development of control software, the convenience of using and maintenance are ensured and the patient adapted therapy protocol is applied. The developed patient adapted electromagnetic therapy system with monitoring device is regarded as the patient affinitive treating method by reducing the riskiness, improving the efficiency with patterned protocol and pre/post therapy. These results, in this study, can bring the safe and organized treatment method to incontinence patients and can lead the variable study for electromagnetic therapy in incontinence.

A Discrete Model of Conveyor Systems for FMS (FMS를 위한 Conveyor System의 이산구조 모델링)

  • Sin, Ok-Geun
    • The Transactions of the Korea Information Processing Society
    • /
    • v.3 no.6
    • /
    • pp.1397-1406
    • /
    • 1996
  • In this paper, we propose a discrete model of conveyor systems, which is frequently used in flexible manufacturing systems to transfer work-in-process( WIP) between manipulators. In the case where the time required for transferring WIP's between manipulators are greater than that of manufacturing itself, as in many flexible assembly lines, the quantitative model of the transfer systems is needed to analyze the behavior and productivity of the whole manufacturing system. The proposed model is based upon the assumptions that the length of any unit conveyor component is integer multiple of the length of a pallet and hat the transferring speed of the conveyor is constant. Under these assumptions, the observation moments and the length of the conveyor can be quantized. Hence, the state of a conveyor can be represented by two kinds of Boolean variables: one representing the presence of a pallet on each quantize conveyor length and the other representing the mobility of this pallet. The whole conveyor system can be modeling as a network composed of branches and knots based on these two Boolean variables. The proposed modelling method was tested with various conveyor system configurations and showed that the model can be adopted successfully for the simulation of transfer systems and of the piloting of manufacturing processes.

  • PDF

Preliminary study on a spoke-type EPB shield TBM by discrete element method (개별요소법을 활용한 스포크 타입 토압식 쉴드TBM의 예비 해석 연구)

  • Lee, Chulho;Chang, Soo-Ho;Choi, Soon-Wook;Park, Byungkwan;Kang, Tae-Ho;Sim, Jung Kil
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.19 no.6
    • /
    • pp.1029-1044
    • /
    • 2017
  • The Discrete Element Method (DEM) is one of the useful numerical methods to analyze the behavior of the ground formation by computing the motion and interaction using particles. The DEM has not been applied in civil engineering but also a wide range of industrial fields, such as chemical engineering, pharmacy, material science, food engineering, etc. In this study, to review a performance of the spoke-type earth pressure balance (EPB) shield TBM (Tunnel Boring Machine), the commercial software based on the DEM technology was used. An analysis of the TBM during excavation was conducted according to two pre-defined excavation conditions with the different rotation speed of a cutterhead. During the analysis, the resistant torque at the face of the cutterhead, the compressive force at the cutterhead and shield surface, the muck discharge at the screw auger were measured and compared. Upon the two kinds of excavation conditions, the applicability of the DEM analysis was reviewed as a modelling method for the TBM.