• Title/Summary/Keyword: 우주비행체(spacecraft)

Search Result 48, Processing Time 0.024 seconds

Relative Navigation Study Using Multiple PSD Sensor and Beacon Module Based on Kalman Filter (복수 PSD와 비콘을 이용한 칼만필터 기반 상대항법에 대한 연구)

  • Song, Jeonggyu;Jeong, Junho;Yang, Seungwon;Kim, Seungkeun;Suk, Jinyoung
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.46 no.3
    • /
    • pp.219-229
    • /
    • 2018
  • This paper proposes Kalman Filter-based relative navigation algorithms for proximity tasks such as rendezvous/docking/cluster-operation of spacecraft using PSD Sensors and Infrared Beacon Modules. Numerical simulations are performed for comparative analysis of the performance of each relative-navigation technique. Based on the operation principle and optical modeling of the PSD Sensor and the Infrared Beacon Module used in the relative navigation algorithm, a measurement model for the Kalman filter is constructed. The Extended Kalman Filter(EKF) and the Unscented Kalman Filter(UKF) are used as probabilistic relative navigation based on measurement fusion to utilize kinematics and dynamics information on translational and rotation motions of satellites. Relative position and relative attitude estimation performance of two filters is compared. Especially, through the simulation of various scenarios, performance changes are also investigated depending on the number of PSD Sensors and IR Beacons in target and chaser satellites.

Design of the COMS Satellite Ground Control System (통신해양기상위성 관제시스템 설계)

  • Lee, Byeong-Seon;Jeong, Won-Chan;Lee, Sang-Uk;Lee, Jeom-Hun;Kim, Jae-Hun
    • Journal of Satellite, Information and Communications
    • /
    • v.1 no.2
    • /
    • pp.16-24
    • /
    • 2006
  • As a multi-mission GEO satellite, COMS system is being developed jointly by KARI, ETRI, KORDI, KMA, and industries from both abroad and domestic. EADS ASRTIUM is the prime contractor for manufacturing the COMS. ETRI is developing the COMS Ka-band payload and SGCS with the fund from MIC. COMS Satellite Ground Control System (SGCS) will be the only system for monitor and control of the satellite in orbit. In order to fulfill the mission operations of the three payloads and spacecraft bus, COMS SGCS performs telemetry reception and processing, satellite tracking and ranging, command generation and transmission, satellite mission planning, flight dynamics operations, and satellite simulation, By the proper functional allocations, COMS SGCS is divided into five subsystems such as TTC, ROS, MPS, FDS, and CSS. In this paper, functional design of the COMS SGCS is described as five subsystems and the interfaces among the subsystems.

  • PDF

On-board and Ground Autonomous Operation Methods of a Low Earth Orbit Satellite for the Safety Enhancement (저궤도 위성의 안전성 향상을 위한 위성체 및 지상의 자율 운영 방안)

  • Yang, Seung-Eun
    • Journal of Satellite, Information and Communications
    • /
    • v.11 no.3
    • /
    • pp.51-57
    • /
    • 2016
  • Many kinds of telemetry should be monitored to check the state of spacecraft and it leads the time consumption. However, it is very important to define the status of satellite in short time because the contact number and time of low earth orbit satellite is limited. Also, on-board fault management should be prepared for non-contact operation because of the sever space environment. In this paper, on-board and ground autonomous operation method for the safety enhancement is described. Immediate fault detection and response is possible in ground by explicit anomaly detection through satellite event and error information. Also, satellite operation assistant system is proposed for ground autonomy that collect event sequence in accordance with related telemetry and recommend or execute an appropriate action for abnormal state. Critical parameter monitoring method with checking rate, mode and threshold is developed for on-board autonomous fault management. If the value exceeds the limit, pre-defined command sequence is executed.

GaInP/GaAs/Ge Triple Junction Solar Array Power Performance Evaluation on Geostationary Orbit (GaInP/GaAs/Ge 3중 접합 태양전지 배열기의 정지궤도에서 전력 성능 평가)

  • Koo, Ja-Chun;Park, Hee-Sung;Lee, Na-Young;Cheon, Yee-Jin;Cha, Han-Ju;Moon, Gun-Woo;Ra, Sung-Woong
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.42 no.12
    • /
    • pp.1057-1064
    • /
    • 2014
  • The satellite on geostationary orbit accommodates multiple payloads into a single spacecraft platform and launched in June 26, 2010. The electrical power required to the satellite during sunlight is generated by a solar array wing. The solar cells are the GaInP/GaAs/Ge Triple Junction cells named Gaget2 cells from RWE Space, which were based on a Spectrolab epitaxy. This paper evaluates solar array power performance at end of design life based on the trend analysis results for the flight data on geostationary orbit. The estimated solar array power performance at end of design life compares with the power performance provided by solar array manufacturer. The solar cells show nominal behavior without significant degradation through the trend analysis results.

Time Synchronization over SpaceWire Network using Hop Count Information (홉 카운트 정보를 이용한 스페이스와이어 네트워크 시각동기화 방안)

  • Ryu, Sang-Moon
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2016.10a
    • /
    • pp.715-718
    • /
    • 2016
  • SpaceWire invented for on-board data handling in a spacecraft has Time-Code defined for time synchronization over SpaceWire network. Delay and jitter of the transmission of Time-Code caused when a Time-Code travels through a network are the main reasons of time synchronization error. This work proposes a scheme that can reduce the time synchronization error by using extended Time-Codes. The proposed scheme can remove both transmission jitter and transmission delay. The scheme will be validated in a simulation environment built with OMNeT++.

  • PDF

Optimal Earth-Moon Trajectory Design using Constant and Variable Low Thrust (등저추력과 가변저추력을 이용한 지구-달 천이궤적 설계)

  • Song, Young-Joo;Park, Sang-Young;Choi, Kyu-Hong;Sim, Eun-Sup
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.37 no.9
    • /
    • pp.843-854
    • /
    • 2009
  • For preparing Korean lunar missions, optimal Earth-Moon transfer trajectory is designed using continuous low thrust. Using both constant and variable low thrusting method, "End-to-End" mission analysis is made from beginning of the Earth departure to the final lunar arrival. Spacecraft's equations of motion is expressed using N-body dynamics including the gravitational effects due to the Earth, Moon, Sun and also with Earth's $J_2$ effects. Planets' exact locations are computed accurately with JPL's DE405 ephemeris. As a results, optimal thrust steering angle's characteristics are discovered which showed almost tangential direction burns at the near of central planets. Also, it is confirmed that variable low thrusting method is more efficient than constant thrusting method, and can save about 5% of fuel consumption. Presented algorithm and various results will give numerous insights into the future Korea's Lunar missions using low thrust engines. Also, it is expected to be used as a basis of more detailed mission analyzing tool.

Analysis of Load Value acting Free Falling Object according to Disturbance using Nonlinear Load Control Model (비선형 하중 제어 모델에서 외란에 따른 자유낙하 물체에 작용하는 하중값 분석)

  • Wang, Hyeon-Min;Woo, Kwang-Joon
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.47 no.2
    • /
    • pp.55-59
    • /
    • 2010
  • Recently it is tried to use load control model for maneuver moving object. MIN design method proposed to solve control problem of nonlinear system using load concept. The Min design method shows direct method for finding control value on the load control model. In this paper, is shown realization free falling model using nonlinear load control model and analysis of load values acting falling object according to disturbance. And made a trajectory according to acting load values due to disturbance. This paper's result is able to be applied to design algorithm for improvement accuracy of MLRS, GPS air-to-surface missile(ASM) and returning spacecraft with nonlinear model predictive control.

Photogrammetry 기법을 활용한 MSC 설치면의 정밀 측정

  • Woo, Sung-Hyun;Kim, Hong-Bae;Moon, Sang-Mu;Im, Jong-Min
    • Aerospace Engineering and Technology
    • /
    • v.3 no.1
    • /
    • pp.126-133
    • /
    • 2004
  • Photogrammetry, as its name implies, is a 3-dimensional coordinate measuring technique that uses photographs as the fundamental medium for metrology. In the last few years the accuracy of photogrammetry has increased dramatically thanks to the rapid advance of digital camera manufacturing technique. This paper discusses photogrammetric measurement of the interface surface of MSC(Multi-Spectral Camera), which is a main payload of KOMPSAT-2. Total 24 paper targets on the objective surfaces and two scale bars calibrated with high accuracy were used for measurement, and multiple images were taken from 11 different camera angles by using a spacecraft rotation dolly. As a result of analysis, 3D coordinates of each targeted point were obtained and the flatness value based on the selected reference plane was calculated and compared with the pre-determined requirement. The technique acquired by this study is expected to be used for the 3D precise measurement of ultra-light weight and inflatable space structures such as a satellite antenna and a solar array.

  • PDF