• Title/Summary/Keyword: 우주방사선

Search Result 112, Processing Time 0.035 seconds

Development of Freeze-dried Bibimbap, Korean Cooked Rice with Red Pepper Paste, as a Space Food Sterilized by Irradiation (동결건조 비빔밥을 이용한 방사선 멸균 우주식품 개발)

  • Lee, Ju-Yeon;Song, Beom-Seok;Park, Jae-Nam;Kim, Jae-Hun;Choi, Jong-Il;Park, Jong-Heum;Kim, Jae-Kyung;Lee, Ju-Woon
    • Journal of Radiation Industry
    • /
    • v.5 no.3
    • /
    • pp.267-272
    • /
    • 2011
  • This study evaluated the microbial population (total aerobic count, fungi) and organoleptic quality of freeze-dried bibimbap sterilized by gamma irradiation to develop the space food. An irradiation dose above 30 kGy was needed to sterilize the freeze-dried bibimbap, while organoleptic quality of the sample was significantly decreased by irradiation (p<0.05). However, it was observed that scores on overall acceptance of rehydrated bibimbap after irradiation were the highest, when vitamin C and paprika extract were added at 0.1%, respectively. Therefore, it was considered that the freeze-dried bibimbap could be developed as a space food, which meet microbial requirements and organoleptic quality through addition of vitamin C 0.1% and paprika extract 0.1% before gamma irradiation at 30 kGy.

Characteristics of Remote Sensors on KOMPSAT-I (다목적 실용위성 1호 탑재 센서의 특성)

  • 조영민;백홍렬
    • Korean Journal of Remote Sensing
    • /
    • v.12 no.1
    • /
    • pp.1-16
    • /
    • 1996
  • Korea Aerospace Research Institute(KARI) is developing a Korea Multi-Purpose Satellite I(KOMPSAT-I) which accommodates Electro-Optical Camera(EOC), Ocean Color Imager(OCI), Space Physics Sensor(SPS) for cartography, ocean color monitoring, and space environment monitoring respectively. The satellite has the weight of about 500 kg and is operated on the sun synchronized orbit with the altitude of 685km, the orbit period of 98 minutes, and the orbit revisit time of 28days. The satellite will be launched in the third quarter of 1999 and its lifetime is more than 3 years. EOC has cartography mission to provide images for the production of scale maps, including digital elevation models, of Korea from a remote earth view in the KOMPSAT orbit. EOC collects panchromatic imagery with the ground sample distance(GSD) of 6.6m and the swath width of 15km at nadir through the visible spectral band of 510-730 nm. EOC scans the ground track of 800km per orbit by push-broom and body pointed method. OCI mission is worldwide ocean color monitoring for the study of biological oceanography. OCI is a multispectral imager generating 6 color ocean images with and <1km GSD by whisk-broom scanning method. OCI is designed to provide on-orbit spectral band selectability in the spectral range from 400nm to 900nm. The color images are collected through 6 primary spectral bands centered at 443, 490, 510, 555, 670, 865nm or 6 spectral bands selected in the spectral range via ground commands after launch. SPS consists of High Energy Particle Detector(HEPD) and Ionosphere Measurement Sensor(IMS). HEPD has mission to characterize the low altitude high energy particle environment and to study the effects of radiation environment on microelectronics. IMS measures densities and temperature of electrons in the ionosphere and monitors the ionospheric irregularities in KOMPSAT orbit.

Development of the solid propellant for the rocket motor of the space launch vehicle (우주발사체 고체추진기관 추진제 조성연구)

  • Song, Jong-Kwon;Won, Jong-Woong;Choi, Sung-Han;Suh, Hyuk
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2009.11a
    • /
    • pp.185-188
    • /
    • 2009
  • The rocket motor of the space launch vehicle offers thrust for satellite to enter into the orbit. Characters of the solid propellant for rocket motors are affected by the space conditions such as vacuum and space radiation. The solid propellant used for such a purpose should not undergo physical, internal ballistic and energetic changes when exposed to vacuum and space radiation. This study describes the development of the solid propellant composition for the rocket motor of the space launch vehicle. Also, experimental study was conducted on supersonic diffuser in order to verify the performance of the solid propellant composition which was applied to standard motor on the ground in the vacuum condition.

  • PDF

Conceptual Design of High Speed Data Processing Unit for Next Generation Satellite (차세대 인공위성용 고속데이터 처리유닛 개념설계)

  • Oh, Dae-Soo;Seo, In-Ho;Lee, Jong-Ju;Park, Hong-Young;Chung, Tae-Jin;Kim, Hyung-Myung;Park, Jong-Oh;Yoon, Jong-Jin;Cha, Kyung-Hwan
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.36 no.6
    • /
    • pp.616-620
    • /
    • 2008
  • High reliability is the important parameter on designing satellite system and it is also important to design hish speed data processing unit. To make high speed satellite processing unit, it is needed to utilize space processor, high speed data interface technology, mass memory control technology and data protection technology under space radiation environment.

달과 화성의 토양에서 지하 깊이에 따른 고에너지 우주선 환경 영향 분석

  • Jeong, Jong-Il;Son, Jong-Dae;Lee, Yu;O, Su-Yeon
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.37 no.2
    • /
    • pp.104.2-104.2
    • /
    • 2012
  • 미국, 중국, 일본, 인도 등과 같은 세계 여러 국가들이 달 및 화성 탐사를 수행하고 있는 현시점에서 우리나라도 2025년에 달 탐사를 계획하고 있다. 인간에게 있어서 우주공간은 고에너지 환경의 영향을 많이 받는 곳이다. 향후 달, 화성과 같은 다른 행성으로의 이주를 생각하고 있는 현 시점에서 우리는 고에너지우주방사선 환경의 영향을 고려해야 한다. 지구에서의 인간은 지구 자기장과 대기에 의해 고에너지 우주선 환경으로부터의 영향을 덜 받는다. 그러나 달과 화성의 경우는 다르다. 달의 대기는 거의 없고 자기장도 무시할 정도로 매우 작으며, 화성 또한 자기장이 거의 없으며 대기 또한 얇아서 Galactic Cosmic Ray (GCR)나 Solar Energetic Proton (SEP) 등으로부터 인간은 많은 영향을 받을 수 있다. 이러한 위험으로부터 인간이 보호받을 수 있는 곳은 달과 화성의 지표 아래나 동굴이라고 볼 수 있다. 그래서 달 및 화성의 표면과 지하 영역에 대한 고에너지 우주선 환경의 깊이에 따른 영향을 분석하여 어느 정도로 두터운 천장을 가진 동굴이어야 우주인들이 상주하는 지하공간을 지구표면에서의 방사선 환경과 같은 수준으로 유지할 수 있는지를 추정해 보려고 한다. 달 표면 토양의 화학적 구성성분은 Maria와 Highlands로 구분되어 약간의 차이가 있다. 달의 Maria 토양은 $SiO_2$ - 45.4%, $Al_2O_3$ - 14.9%, CaO - 11.8%, FeO - 14.1%, MgO - 9.2%, $TiO_2$ - 3.9%, $Na_2O$ - 0.6%이고 Highlands의 토양은 $SiO_2$ - 45.5%, $Al_2O_3$ - 24.0%, CaO - 15.9%, FeO - 5.9%, MgO - 7.5%, $TiO_2$ - 0.6%, $Na_2O$ - 0.6%의 화학적인 구성비를 가진다. 또한 화성표면은 $SiO_2$ - 43.9%, $Al_2O_3$ - 8.1%, CaO - 6.0%, FeO - 18.1%, MgO - 7.1%, $Na_2O$ - 1.4%의 토양의 화학적인 구성비를 가지고 있다. 본 연구에서는 이러한 구성비를 가지고 있는 달과 화성 표면에 대한 우주방사선의 영향을 분석하기 위해서 GEANT4를 사용하여 수행한 전산 모사의 결과를 발표할 것이다.

  • PDF

Development of proton test logic of RFSoC and Evaluation of SEU measurement (RFSoC의 양성자 시험 로직 개발 및 SEU 측정 평가)

  • Seung-Chan Yun;Juyoung Lee;Hyunchul Kim;Kyungdeok Yu
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.24 no.1
    • /
    • pp.97-101
    • /
    • 2024
  • In this paper, we present the implementation of proton beam irradiation test logic and test results for Xilinx's RFSoC FPGA. In addition to the FPGA function, RFSoC is a chip that integrates CPU, ADC, and DAC and is attracting attention in the defense and space industries aimed at reducing the size of the chip. In order to use these chips in a space environment, an analysis of radiation effects was required and radiation mitigation measures were required. Through the proton irradiation test, the logic to measure the radiation effect of RFSoC was designed. Logic for comparing values stored in memory with normal values was implemented, and protons were irradiated to RFSoC to measure SEU generated in the block memory area. To alleviate the occurrence of SEU in other areas, TMR and SEM were applied and designed. Through the test results, we intend to verify this test configuration and establish an environment in which logic design for satellites can be verified in the future.

Study of a Protection Technology to the Transient Radiation for the Semiconductors (반도체에 대한 과도방사선 방호기술연구)

  • Lee, Nam-ho;oh, Sung-Chan;Jeong, Sang-hun;Hwang, Young-gwan;Kim, Jong-yul
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2013.05a
    • /
    • pp.1023-1026
    • /
    • 2013
  • The electronic equipment which was exposed to high level pulsed radiation is damaged as Upset, Latchup, and Burnout. Those damages has come from the instantaneous photocurrent from electron-hole pairs generated in itself. Such damages appeared as losses of power in military weapon system or of blackout in aerospace equipment and eventually caused in gross loss of national. In this paper, we have implemented a RDC(Radiation detection and control module) as part of the radiation protection technology of the electronic equipment or devices from the pulsed gamma radiation. The RDC which is composed of pulsed gamma-ray detection sensor, signal processors, and pulse generator is designed to protect the important electronic circuits from the pulse radiation. To verify the functionality of the RDC, LM118s which had damaged by the pulse radiation were tested. The test results showed that the test sample applied with a RDC was worked well in spite of the irradiation of the same pulse radiation. Through the experiments we could confirm that the radiation protection technology implemented with RDC had the functionality of radiation protection to the electronic devices.

  • PDF

State of the Art for Space Propulsion Employing Nuclear Power (핵동력 우주추진 기술개발 동향)

  • Hong Yeong Park;Yun Hyeong Kang;Jeong Soo Kim;Soo Seok Yang
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.26 no.6
    • /
    • pp.86-100
    • /
    • 2022
  • In this paper, the concept and characteristics of the nuclear propulsion system were introduced and the state of the art for the nuclear-powered space propulsion in abroad were summarized. Since uranium used in nuclear propulsion has a very high energy density per unit mass, it has exceptional specific impulse performance compared to the existing chemical propulsion method and can reduce the amount of fuel loaded, thereby having advantage for long-distance exploration. For this reason, advanced countries in space development are recently spurring to the research of nuclear propulsion technology, and it is judged that the development of a propulsion engine using nuclear power is absolutely necessary in order to gain an competitive edge on the space development.

하드웨어 메모리 스크러버 설계

  • Kim, Dae-Young;Cho, Chang-Burm;Kang, Seok-Ju;Chae, Tae-Byung
    • Aerospace Engineering and Technology
    • /
    • v.2 no.1
    • /
    • pp.73-79
    • /
    • 2003
  • Usual satellite design adopts hardware Error Detection and Correction (EDAC) circuitary for memory elements to endure proper operation in space radiation environment and periodic read-back(scrubbing) scheme to remove errors occurred and to prevent further accumulation of errors, in parallel, But lack of detail radiation test data upset rates of KOMPSAT-2 mass storage was estimated very worse compared to that of KOMPSAT-1, which was evaluated from very precise radiation test. Although upset rates were evaluated enough low to accommodate by KOMPSAT-2 Flight Software, hardware scrubbing scheme is studied to shorten scrubbing time as well. This paper describes hardware scrubbing architecture having minimum 1.88 minutes scrubbing interval over 1 Gbits memory.

  • PDF