• 제목/요약/키워드: 우라늄산화물

검색결과 12건 처리시간 0.017초

Study of the Electrolytic Reduction of Uranium Oxide in LiCl-Li$_{2}$O Molten Salts with an Integrated Cathode Assembly

  • 박성빈;서중석;강대승;권선길;박성원
    • 방사성폐기물학회지
    • /
    • 제3권2호
    • /
    • pp.105-112
    • /
    • 2005
  • 650$^{\circ}C$의 LiCl-Li$_{2}$O 용융염계에서 10 g U$_{3}$O$_{8}$/batch 규모의 장치를 이용해서 우라늄산화물의 전해환원 특성에 대한 평가를 수행하였다. 일체형 음극은 고체전극, 우라늄산화물과 우라늄산화물을 담아주는 다공성 용기(멤브레인)로 구성된다. 멤브레인 재료로는 325-mesh 스테인레스강막과 다공성 마그네시아 도가니를 사용하였다. 일체형 음극의 재질에 따른 LiCl-3 wt$\%$ Li$_{2}$O계와 U$_{3}$O$_{8}$-LiCl-3 wt$\%$ Li$_{2}$O계의 순환 전압측정법 결과로부터 전해환원 반웅 메커니즘을 규명하였다. 일체형 음극의 재질에 따른 우라늄산화물의 직접 및 간접 전해환원에 대한 실험을 수행하였다. 그 결과, 325-mesh스테인레스강막을 사용하여 직접 및 간접 전해환원으로 금속전환을 수행하였을 때 낮은 전류효율로 인해 우라늄산화물을 금속우라늄으로 환원시키지 못했으며, 마그네시아 다공성 도가니를 사용하여 간접 전해환원으로 금속전환을 수행하였을 때는 높은 전류효율로 인해 우라늄산화물을 금속우라늄으로 환원시킬 수 있었다

  • PDF

유로퓸 고용(固溶) 우라늄산화물(酸化物)의 황화반응(黃化反應) 특성(特性) (Sulfurization Reaction Characteristics of Eu-doped Uranium Oxides)

  • 이재원;박근일;이정원
    • 자원리싸이클링
    • /
    • 제22권3호
    • /
    • pp.57-64
    • /
    • 2013
  • 희토류산화물인 $Eu_2O_3$, 우라늄산화물인 $UO_2$$U_3O_8$, $Eu_2O_3$와 우라늄산화물의 혼합물에 대한 선택적 황화반응을 조사한 후에, $(U,Eu)O_2$$(U,Eu)_3O_8$와 같은 Eu 고용 우라늄산화물, Eu 고용 우라늄산화물의 고온 산화열처리 상분리 생성물인 Eu 농도가 높은 $(U,Eu)_4O_9$$U_3O_8$의 혼합상에 대한 황화반응 특성을 $400-800^{\circ}C$에서 조사하였다. $Eu_2O_3$ 및 우라늄산화물의 혼합물의 경우에는 $450^{\circ}C$에서 Eu와 우라늄 산화물간의 반응이 없이 $Eu_2O_3$$Eu_3S_4$로 전환되었다. $(U,Eu)_3O_8$$(U,Eu)O_2$에서는 반응온도 $600^{\circ}C$까지는 우라늄산화물과 동일한 황화반응 거동을 보였으며, $800^{\circ}C$에서는 Eu 농도가 높은 $(U,Eu)S_x$${\alpha}-US_2$ 상이 생성되었다. 고온 산화열처리 상분리 생성물은 $600^{\circ}C$에서 $(U,Eu)S_x$과 UOS 상이 생성되었다. 상분리 생성물을 환원하여 얻은 Eu 농도가 높은 $(U,Eu)O_2$$UO_2$의 혼합상은 $450^{\circ}C$에서 $(U,Eu)O_2$은 산황화물인 (U,Eu)OS로 전환되고 $UO_2$는 반응하지 않았다.

분광기를 이용한 우라늄산화물(UOX) 소결체의 밀도 분석 (Analysis of Sintered Density for Uranium Oxide Pellet Using Spectrophotometer)

  • 이병국;양승철;곽동용;조현광;이준호;배영문;이영우
    • 공업화학
    • /
    • 제28권3호
    • /
    • pp.345-350
    • /
    • 2017
  • 원자력연료 제조공정에서 생산되는 우라늄산화물(uranium oxide, UOX) 소결체의 밀도 분석은 일반적으로 소결공정을 거친 후, 소결체의 표본을 가지고 측정한다. 본 연구에서는 우라늄산화물의 중간물질인 중우라늄산암모늄(ammonium diuranate)의 색도를 분광기(spectrophotometer)로 측정함으로써 소결공정 이전에 우라늄산화물 소결체의 밀도를 분석해 보았다. 중우라늄산암모늄 표준 샘플 5개를 통해 얻은 명도 및 색의 좌푯(L, a, b)값과 통상적인 방법으로 얻은 소결체 밀도의 상관관계 추세선을 바탕으로 표적 샘플의 밀도를 분석한 결과, L 값에 대한 소결체의 밀도 분석이 결정계수 $R^2$ 값 0.9967로 가장 신뢰성이 높게 나왔음을 확인하였다. a 값에 대한 결정계수 $R^2$ 값은 0.9534로 상관관계가 높은 편이나 L 값보다는 낮았다. 이에 반해 b 값에 대한 결정계수 $R^2$ 값은 0.4349로 상관관계가 거의 없었다.

우라늄 및 희토류(稀土流) 산화물(酸化物)의 황화반응(黃化反應)에 대한 열역학적(熱力學的) 고찰(考察) (Study on Thermodynamic Properties of Sulfidization for Uranium and Rare Earth Oxides)

  • 이정원;이재원;강권호;박근일
    • 자원리싸이클링
    • /
    • 제21권1호
    • /
    • pp.66-74
    • /
    • 2012
  • 우라늄 및 희토류(RE: rare-earth) 산화물의 황화반응에 대한 $M-O_2-S_2$ 상태도 및 Gibbs 자유에너지 변화(${\Delta}G^{\circ}$)와 같은 열역학적 특성 자료를 비교, 분석하여 우라늄 및 회토류 산화물의 혼합상에서 황화반응에 의해 희토류산화물만 희토류황화물로의 선택적 반응이 가능한지를 조사하였다. 황화제로는 $CS_2$가 적합하였는데, $CS_2$는 다른 황화제보다 강한 황화재이며 반응온도를 낮출 수 있다. $CS_2$를 황화제로 이용하여 $U_2-O_2-S_2$$RE-O_2-S_2$의 상태도를 비교한 결과, $UO_2$은 반응하여 UOS로 전환되며 희토류산화물은 반응하여 희토류황화물이 되었다. 희토류산화물의 황화반응에 의한 ${\Delta}G^{\circ}$는 우라늄산화물의 ${\Delta}G^{\circ}$보다 낮았다. 따라서 희토류와 우라늄 산화물 혼합상은 $300{\sim}800^{\circ}C$에서의 황화반응 시에 평형상태에서 우라늄산황화물과 희토류황화물이 우선적으로 생성된다.

Li2O-LiCl 용융염에서의 다공성 양극 슈라우드를 이용한1kg 우라늄산화물의 전해환원 (Electrolytic Reduction of 1 kg-UO2 in Li2O-LiCl Molten Salt using Porous Anode Shroud)

  • 최은영;이정;전민구;이상권;김성욱;전상채;이주호;허진목
    • 전기화학회지
    • /
    • 제18권3호
    • /
    • pp.121-129
    • /
    • 2015
  • 사용후핵연료 재활용을 위한 파이로프로세싱의 전해환원 공정에서는 $Li_2O-LiCl$ 용융염을 전해질로 사용하며 금속산화물 형태의 사용후핵연료를 음극, 백금을 양극으로 사용하여 금속전환체를 제조한다. 따라서, 음극에서는 금속산화물이 금속으로 전환되는 환원반응으로 인해 산소 이온이 생성되고, 양극에서는 그 산소이온이 산소 가스가 되는 산화반응이 발생한다. $650^{\circ}C$의 운전 온도에서 발생하는 양극의 산소 가스로 인한 금속 재질 장치의 부식을 막기 위해 양극을 둘러싸는 슈라우드(shroud)를 사용해 산소 가스를 포집하여 전해질로의 확산을 막는 동시에 장치 외부로 배출되도록 한다. 기존에는 슈라우드 자체의 부식과 산소 가스의 염 내 확산을 방지하기 위하여 세라믹을 사용하였으나 비다공성 재질로 인해 산소 이온의 백금 표면으로의 이동 경로를 제한하여 공정의 속도를 좌우하는 전류 크기를 낮춘다는 문제점이 있었다. 이러한 문제를 극복하기 위하여 스테인레스 스틸 mesh로 구성된 다공성 슈라우드의 사용이 수 그램 규모 실험을 통해 제안된 바 있다. 본 연구에서는 킬로그램 규모의 우라늄산화물 전해환원 운전을 통해 다공성 슈라우드의 안정성을 확인 하고자 하였다. 음극의 우라늄산화물로는 크기 1~4 mm, 밀도 $10.30{\sim}10.41g/cm^3$의 파쇄 펠렛 1 kg이 사용되었으며, 백금 전극과 다공성 슈라우드가 포함된 양극 모듈을 사용하였다. 전해환원 종료후 음극에서 우라늄 금속이 성공적으로 얻어졌으며, 백금 양극 및 다공성 슈라우드도 손상 없이 안정하게 사용되었다. $650^{\circ}C$에서의 LiCl의 점도와 동일한 물과 에틸렌글리콜의 혼합물에서 산소 가스를 주입하여 확인 결과 산소 버블이 다공성 슈라우드 외부로 유출되는 것은 관찰되지 않았다.

동전기제염장치에서 발생한 폐액의 재사용을 위한 개선된 처리기술 (Improved Treatment Technique for the Reuse of Waste Solution Generated from a Electrokinetic Decontamination System)

  • 김완석;김승수;김계남;박욱량;문제권
    • 방사성폐기물학회지
    • /
    • 제12권1호
    • /
    • pp.1-6
    • /
    • 2014
  • 우라늄으로 오염된 토양을 복원하기 위해 실규모의 동전기제염장치로 제염하는 과정에서 많은 산폐액이 발생한다. 발생한 산폐액에 CaO를 가해 우라늄수산화물을 침전시켜 여과한 다음, 방사성 폐액을 줄이기 위하여 이 용액을 재사용하였다. 그러나 이 용액을 동전기에 재사용할 경우, 높은 농도의 칼슘 때문에 양극실에서 음극실로 용액이동 속도가 감소하여 여과포의 약화, 전선 부식, 음극면에 산화물 부착 등의 문제점이 발생하였다. 이 문제들을 해결하기 위하여 재생액에 황산을 넣어 $CaSO_4$로 침전시켜 칼슘을 제거하였다. 칼슘이 제거된 재생액을 사용하여 소형 동전기 장치에서 20 일간 토양제염 실험을 수행한 결과는 세척후 토양내 우라늄 잔류 농도가 0.35 Bq/g로 감소하였으며, 이는 증류수 제염한 결과와 유사하게 나타났다.

고온가스로용 핵연료 제조에서 열처리 조건이 우라늄산화물 입자 특성에 미치는 영향 (Effects of Thermal Treatment Conditions on the Powder Characteristics of Uranium Oxide in HTGR Fuel Preparation)

  • 김연구;정경채;오승철;서동수;조문성
    • 한국분말재료학회지
    • /
    • 제16권2호
    • /
    • pp.115-121
    • /
    • 2009
  • The effects of thermal treatment conditions on ADU (ammonium diuranate) prepared by SOL-GEL method, so-called GSP (Gel supported precipitation) process, were investigated for $UO_2$ kernel preparation. In this study, ADU compound particles were calcined to $UO_3$ particles in air and Ar atmospheres, and these $UO_3$ particles were reduced and sintered in 4%-$H_2$/Ar. During the thermal calcining treatment in air, ADU compound was slightly decomposed, and then converted to $UO_3$ phases at $500^{\circ}C$. At $600^{\circ}C$, the $U_3O_8$ phase appeared together with $UO_3$. After sintering of theses particles, the uranium oxide phases were reduced to a stoichiometric $UO_2$. As a result of the calcining treatment in Ar, more reduced-form of uranium oxide was observed than that treated in air atmosphere by XRD analysis. The final phases of these particles were estimated as a mixture of $U_3O_7$ and $U_4O_9$.