• Title/Summary/Keyword: 용착 효율

Search Result 10, Processing Time 0.034 seconds

Development of Process for High Deposited Metal Melting Efficiency in TIG Welding Using Filler Wire (필러와이어를 쓰는 TIG용접에서 용착금속의 높은 용융효율을 얻기 위한 공정개발)

  • Shin, Hee-Seop;Ham, Hyo-Sik;Seo, Ji-Seuk;Cho, Sang-Myoung
    • Proceedings of the KWS Conference
    • /
    • 2010.05a
    • /
    • pp.41-41
    • /
    • 2010
  • 에어컨용 냉매 압축기, 냉장고용 냉매압축기 및 자동차 샷시 부품들은 주로 겹치기 필릿용접을 GMAW 으로 실시하고 있다. 그러나 용접 시 스패터 발생으로 인한 추가공수가 요구되며 작업환경 또한 열악한 실정이다. 따라서 저가의 고생산이면서 용접비드의 외관이 미려하고 스패터, 소음 그리고 Fume 이 발생되지 않는 청정한 TIG 용접이 있지만, 용접속도가 수십 cpm 이하로 제한되어 생산성이 낮다는 기술적 모순을 가지고 있다. TIG 용접에서 생산성을 증가시키기 위해 모재와 와이어를 고속 용융 시키려면 전류를 높여 입열량을 증가시켜야 하지만, 증가된 전류로 인하여 상승된 아크력이 험핑비드와 언더컷이 발생되는 물리적 모순을 가진다. 또한 필러와이어를 사용한 기존의 TIG 용접에서 필러 와이어는 주로 원형 단면 와이어를 사용하게 되는데 와이어의 직경이 증가함에 따라 비표면적은 감소하여 용융효율이 낮아지므로 $\Phi$1.2 이하의 필러와이어를 송급하여 용접하였다. 그러나 요구되는 용착량이 큰 경우 필러 와이어를 고속으로 송급하게 되는데 이 경우 필러 와이어 용융이 곤란하거나 송급상의 문제가 자주 생겨 용접속도를 고속으로 하기 곤란하였다. 따라서 필러와이어를 사용한 TIG 용접에서 용착금속의 용융효율을 높게 함으로서 전류를 크게 증가시키지 않으면서도 용접속도를 높일 수 있는 용접 공정개발이 필요한 실정이다. 본 연구에서는 비표면적을 증가시켜 용착금속의 높은 용융효율을 얻을 수 있도록 개발된 와이어와 기존의 $\Phi$3.2 일반와이어 및 를 이용하여 BOP TIG 용접에 비교 실험하였으며, 개발된 와이어와 기존의 $\Phi$1.2 필러와이어를 이용하여 필릿용접부에 적용 실험하여 비교하였다. 그 결과 개발된 와이어의 경우 적절한 비드를 형성하였으나 3.2 일반와이어의 경우 과도한 볼록비드와 불용착부의 문제가 발생하였고, 필릿용접 비교실험에서는 각각 200cpm과 50cpm에서 적절한 비드가 형성되어 더 높은 용착금속 용융효율을 얻을 수 있었다.

  • PDF

Study on Brazing of Large-capacity Aluminum Heat Sinks (대용량 알루미늄 브레이징에 관한 연구)

  • Lee, Young-Lim;Hwang, Soon-Ho
    • Proceedings of the KAIS Fall Conference
    • /
    • 2009.05a
    • /
    • pp.36-39
    • /
    • 2009
  • 최근들어 고전력 및 고성능 전자제품 시장이 확장됨에 따라 대용량 알루미늄 히트싱크의 수요가 급증하고 있다. 이를 위해 고효율의 브레이징 히트싱크가 선호되고 있지만, 기존의 대기 연속로에서는 불충분한 가열과 모재 금속의 서로 다른 두께 때문에 생산이 사실상 불가능하다. 따라서, 본 연구에서는 브레이징 히트싱크 개발을 위하여 새로운 인덱스 배치로 및 브레이징 공정을 최적화하였다. 또한, 브레이징 용착효율과 인장응력 실험도 개발된 브레이징 히트싱크에 대해 이루어졌다.

  • PDF

Evaluation of physical properties of Zn-Al metal coating according to arc metal spray surface treatment method (아크 금속 용사 표면 처리 방법에 따른 Zn-Al 금속 용사 피막의 물리적 특성 평가)

  • Jang, Jong-Min;Kim, Yeung-Kwan;Lee, Han-Seung
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2022.11a
    • /
    • pp.89-90
    • /
    • 2022
  • Arc metal spraying is a widely used method for improving the performance of construction structures such as corrosion resistance and electromagnetic wave shielding. However, when arc metal spraying is applied to a concrete structure, adhesion performance may deteriorate. Therefore, the effect of each surface treatment method on the physical properties between the arc metal spray coating and concrete was reviewed by evaluating the deposition efficiency and adhesion performance according to the arc metal spray surface treatment method (surface reinforcing agent, roughening agent, and sealing agent). As a result, it is suggested as an optimal surface treatment condition to induce non-interface failure by using a roughening agent and to improve the properties of concrete and metal coatings by applying a surface reinforcing agent and sealing agent.

  • PDF

An Evaluation of Physical Properties of Metal Sprayed Coating According to Concrete Surface Treatment Methods (콘크리트 표면 처리 방법에 따른 금속 용사 피막의 물리적 특성 평가)

  • Jang, Jong-Min;Jang, Hyun O;Lee, Han-Seung
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2021.05a
    • /
    • pp.67-68
    • /
    • 2021
  • Social infrastructure facilities can be destroyed instantly when exposed to EMP (ElectroMagnetic Pulse), causing social chaos. However, concrete structures with low electrical conductivity cannot expect EMP shielding effect. Therefore, in this study, a metal sprayed thin film showing excellent EMP shielding performance was applied to a concrete structure to evaluate the metal spray welding efficiency and adhesion performance of the thin film according to the concrete surface treatment method. As a result according to the concrete surface treatment method, It was confirmed that the use of a roughening agent that generates physical irregularities in order to improve the welding efficiency and adhesion performance increases the physical performance of the concrete and metal sprayed thin film.

  • PDF

Analysis and Optimization of the Cladding Parameters for Improving Deposition Efficiency in Cladding using a Low Power Pulsed Nd:YAG Laser (저출력 펄스형 Nd:YAG 레이저를 사용한 클래딩에서 클래딩 변수들이 용착효율에 미치는 영향 분석 및 최적화)

  • Lee, Hyoung-Keun
    • Journal of Welding and Joining
    • /
    • v.25 no.4
    • /
    • pp.49-57
    • /
    • 2007
  • The optimization of the cladding parameters was studied to maximize the deposition efficiency in the laser cladding using a low power pulsed Nd:YAG laser. STS304 stainless steel plate and Co alloy powder were used as a substrate and powder for cladding, respectively. The six cladding parameters were selected through preliminary experiments and their effects on the deposition efficiency were analyzed statistically. Experiments were designed and carried out using the Taguchi experimental method using a L18 orthogonal array. It was found from the results of analysis of variance(ANOVA) that the powder feed position and powder feed angle had the most significant effects on the deposition efficiency, but the powder feed rate and laser focal position had nearly no effects. The deposition efficiency could be maximized at 0mm of the powder feed position and 50o of the powder feed angle in the experimental range. From this experimental analysis, a new laser cladding head with 20o of the powder feed angle was designed and manufactured. With a new laser cladding head, the highest deposition efficiency of 12.2% could be obtained.

Evaluation of physical properties of Zn-Al metal spray coating according to concrete surface and treatment method (콘크리트 표면 처리 방법 및 용사면에 따른 Zn-Al 금속 용사 피막의 물리적 특성 평가)

  • Jang, Jong-Min;Yang, Hyun Min;Lee, Han-Seung
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2022.04a
    • /
    • pp.59-60
    • /
    • 2022
  • When a metal sprayed film of several hundred ㎛ on the concrete surface is possible to 80 dB of shielding effect electromagnetic waves (ElectroMagnetic Pulse, EMP). Therefore, in this study, as a way to secure EMP shielding performance by applying a metal spray coating showing excellent EMP shielding performance to a concrete structure, the metal spray welding efficiency and thin film adhesion performance according to the concrete spray direction and surface treatment method were evaluated. Metal sprayed efficieny according to the metal spraying direction and method was confirmed that the difference was insignificant by applying the roughening agent. However, the method of strengthening the concrete surface and applying the sealing agent show maximum adhesion strength of 3.98 MPa compared to other methods, and it is judged that this method can be utilized for the metal spraying method for concrete EMP shielding.

  • PDF

A Study on Development of Large-capacity Aluminum Heat Sinks Brazed with a Batch Furnace (대용량 알루미늄 브레이징 히트싱크 개발에 관한 연구)

  • Lee, Young-Lim;Hwang, Soon-Ho;Jeon, Euy-Sik
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.10 no.7
    • /
    • pp.1459-1464
    • /
    • 2009
  • Recently demand for large-capacity aluminum heat sinks has been increased as market for high power electricity expands and high-performance electronic products develop. While the brazed heat sinks are in particular preferred, it is almost impossible to manufacture them with an atmospheric continuous furnace due to insufficient heating rate and various thickness of the parent metals. Therefore, a new index batch furnace is developed and the process variables are optimized. Then, brazing efficiency and tensile stress are obtained for brazed parts of the heat sinks. Finally experiment as well as numerical analysis has been performed to compare thermal efficiency of the brazed heat sinks with that of the silicone-bonded heat sinks.

High-efficiency repair welding technology for marine engine components (선박엔진 부품의 고능률 보수용접기술)

  • Kim, Young-Sik;Kil, Sang-Cheol
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.41 no.1
    • /
    • pp.21-30
    • /
    • 2017
  • Of the marine engine components, the piston crown and exhaust valve are repaired most frequently. These works are conducted through conventional welding processes such as GTAW or SAW, domestically in marine engine repair factories. New high-efficiency welding or overlay processes such as tandem SAW, tandem MAG, hybrid TIG-MIG welding, pulsed-GMAW, CMT welding, and super TIG welding have been developed recently. Moreover, the plasma transfered arc (PTA) process is an efficient spray method for overlaying on the exhaust valve. In this review paper, the new high-efficiency repair welding methods are introduced for marine engine components. The problems due to repair welding for marine engine components are also presented.

Study on Incineration Behavior of Heavy Oil Fly Ash for Valuable Metal Recovery (유가금속(有價金屬) 회수(回收)를 위한 중유회(重油灰)의 연소거동(燃燒擧動)에 관한 연구(硏究))

  • Choi, Young-Yeon;Nam, Chul-Woo;Kim, Byoung-Gyu
    • Resources Recycling
    • /
    • v.18 no.1
    • /
    • pp.22-29
    • /
    • 2009
  • To design and construct a moving bed stoker incinerator for incineration treatment of the domestic oil fly ash, operating condition and moving bed area of incinerator were determined by performing incinerate experiment of the oil fly ash in the muffle furnace which simulates moving bed stoker incinerator in all conditions. Incineration process of the oil fly ash could be divided into 3 stages, every stage needs the appropriate operating condition for effective incineration. The optimum content of water in the heavy oil fly ash was found to be 20 wt% to prevent the ash from flying and reduce the volume. Science combustion rate of oil fly ash depends on the oxygen content, the incinerator must have a equipment to control the oxygen content in the combustion air. The optimum temperature was $750{\sim}800^{\circ}C$ in order to prevent adhesion to the stocker and evaporation of metal compounds of low melting point. Uniform combustion reaction and acceleration of combustion rate required agitation during the combustion of oil fly ash. The incineration rate was $12.53kg/m^2hr$ and the working area of moving bed incinerator was found to be $60m^2$ to incinerate 18 tons of oil fly ash per day.

Optimization for Underwater Welding of Marine Steel Plates (선박용 강판의 수중 용접 최적화에 관한 연구)

  • 오세규
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.20 no.1
    • /
    • pp.49-59
    • /
    • 1984
  • Optimizing investigation of characteristics of underwater welding by a gravity type arc welding process was experimentally carried out by using six types of domestic coated welding electrodes for welding of domestic marine structural steel plates (KR Grade A-1, SWS41A, SWS41B,) in order to develop the underwater welding techniques in practical use. Main results obtained are summarized as follows: 1. The absorption speed of the coating of domestic coated lime titania type welding-electrode became constant at about 60 minutes in water and it was about 0.18%/min during initial 8 minutes of absorption time. 2. Thus, the immediate welding electrode could be used in underwater welding for such a short time in comparison with the joint strength of in-atmosphere-and on-water-welding by dry-, wet-or immediate-welding-electrode. 3. By bead appearance and X-ray inspection, ilmenite, limetitania and high titanium oxide types of electrodes were found better for underwater-welding of 10 mm KR Grade A-1 steel plates, while proper welding angle, current and electrode diameter were 6$0^{\circ}C$, above 160A and 4mm respectively under 28cm/min of welding speed. 4. The weld metal tensile strength or proof stress of underwater-welded-joints has a quadratic relationship with the heat input, and the optimal heat input zone is about 13 to 15KJ/cm for 10mm SWS41A steel plates, resulting from consideration upon both joint efficiency of above-100% and recovery of impact strength and strain. Meanwhile, the optimal heat input zone resulting from tension-tension fatigue limit above the base metal's of SWS41A plates is 16 to 19KJ/cm. Reliability of all the empirical equations reveals 95% confidence level. 6. The microstructure of the underwater welds of SES41A welded in such a zone has no weld defects such as hydrogen brittleness with supreme high hardness, since the HAZ-bond boundary area adjacent to both surface and base metal has only Hv400 max with the microstructure of fine martensite, bainite, pearlite and small amount of ferrite.

  • PDF