• Title/Summary/Keyword: 용질 이동 시간

Search Result 26, Processing Time 0.03 seconds

A Numerical Study on Characteristics of Solute Transport in a Rough Single Fracture with Spatial Correlation Length and Effect of Effective Normal Stress (공간적 상관길이와 유효수직응력의 효과에 따른 거친 단일 균열내의 용질이동특성에 관한 수치적 연구)

  • Jeong, Woochang
    • Journal of the Korean GEO-environmental Society
    • /
    • v.10 no.1
    • /
    • pp.5-14
    • /
    • 2009
  • This study is to analyze numerically the spatial behaviors of the solute transport in a spatially correlated variable-aperture fracture under the effective normal stress conditions. Numerical results show that the solute transport in a fracture is strongly affected by the spatial correlation length of apertures and applied effective normal stress. According to increasing spatial correlation length, the mean residence time of solute is decreased and the tortuosity and Peclet number (is a dimensionless number relating the rate of advection of a flow to its rate of diffusion) is also decreased. These results mean that the geometry of the aperture distribution is favorable to the solute transport as the spatial correlation length is increased. However, according to the applied effective normal stress is increased, the mean residence time and tortuosity have a tendency to increase but the Peclet number is decreased. The main reason that the Peclet number is decreased, is that the solute is displaced by one or two channels with relatively higher local flow rate due to the increment of contact areas by increasing effective normal stress. Moreover, based on numerical results of the solute transport in this study, the exponential-type correlation formulae between the mean residence time and the effective normal stress are proposed.

  • PDF

Mass Transfer Characteristics in the Osmotic Dehydration Process of Carrots (당근의 삼투건조시 물질이동 특성)

  • Youn, Kwang-Sup;Choi, Yong-Hee
    • Korean Journal of Food Science and Technology
    • /
    • v.27 no.3
    • /
    • pp.387-393
    • /
    • 1995
  • Diffusion coefficients of moisture and solid, reaction rate constants of carotene destruction, and the fitness of drying models for moisture transfer were determined to study the characteristics of mass transfer during osmotic dehydration. Moisture loss and solid gain were increased with increase of temperature and concentration; temperature had higher osmotic effect than concentration. Diffusion coefficient showed similar trend with osmotic effect. Diffusion coefficients of solids were larger than those of moisture because the movement of solid was faster than that of moisture at the high temperature. Reaction rate constants were affected to the greater extent by concentration changes than by temperature changes. Arrhenius equation was applied to determine the effect of temperature on diffusion coefficients and reaction rate constants. Moisture diffusion required high activation energy in $20^{\circ}Brix$, while relatively low in $60^{\circ}Brix$. To predict the diffusion coefficients and reaction rate constants, a model was established by using the optimum functions of temperature and concentration. The model had high $R^2$ value when applied to diffusion coefficients, but low when applied to reaction rate constants. Quadratic drying model was most fittable to express moisture transfer during drying. In conclusion, moisture content of carrots could be predictable during the osmotic dehydration process, and thereby mass transfer characteristics could be determined by predicted moisture content and diffusion coefficient.

  • PDF

Solute Transport Modeling using Streamline Simulation in a Heterogeneous Aquifer with Multiple Contaminant Sources (불균질 대수층에서 유선 시뮬레이션을 이용한 다수 오염원의 용질 이동 모사)

  • Jung Seung-Pil;Choe Jong-Geun
    • Journal of Soil and Groundwater Environment
    • /
    • v.10 no.3
    • /
    • pp.24-31
    • /
    • 2005
  • This study presents a contaminant transport model suitable for a 2-dimensional heterogeneous aquifer with multiple contaminant sources. It uses a streamline simulation, which transforms a multi-dimensional problem into multiple 1dimensional problems. It runs flow simulation, streamline tracking, and calculation of contaminant concentrations by turns. The model is verificated with a Visual MODFLOW by comparing contaminant concentration distributions and breakthrough curves at an observation well. Due to its fast simulation, it can be applied to time consuming simulations such as in a fine-grided aquifer, an inverse modeling and other applications.

Mass Transfer Characteristics during the Osmotic Dehydration Process of Apples (사과의 삼투건조시 물질이동 특성)

  • 윤광섭;최용희
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.25 no.5
    • /
    • pp.824-830
    • /
    • 1996
  • In order to minimize the deterioration of osmotic dried apple quality, the characteristics of mass transfer during osmotic dehydration such as solid gain(SG), weight reduction(WR) and moisture loss(ML) were investigated. Moisture and solid transfer were analyzed by Fick's law. The highest (equation omitted)E value was observed with severe browning at $60^{\circ}C.$ The concentration effect on (equation omitted)E were higher at high temperatures than at low temperatures. SG, WR and ML increased as immersion temperature, sugar concentration and immersion time increased. Higher concentration of sucrose led to more sucrose absorption resulting increase in SG. Diffusion coefficients of moisture increased with immersion temperature and sugar concentration. As concentration increased, diffusion coefficients of solids increased at $20^{\circ}C$ while it decreased at $40^{\circ}C$ and $60^{\circ}C.$ Arrhenius equation was appropriately explain the effect of temperature on diffusion coefficients. Moisture and solid diffusion showed high activation energy in 20 。Brix solution, compared with in 40 and 60 。Brix.

  • PDF

A Numerical Study on Spatial Behavior of Linear Absorbing Solute in Heterogeneous Porous Media (비균질 다공성 매질에서 선형 흡착 용질의 공간적 거동에 대한 수치적 연구)

  • Jeong, Woo Chang;Lee, Chi Hun;Song, Jai Woo
    • Journal of the Korean GEO-environmental Society
    • /
    • v.4 no.3
    • /
    • pp.79-88
    • /
    • 2003
  • This paper presents a numerical study of the spatial behavior of a linear absorbing solute in a heterogeneous porous medium. The spatially correlated log-normal hydraulic conductivity field is generated in a given two-dimensional domain by using the geostatistical method (Turning Bands algorithm). The velocity vector field is calculated by applying the two-dimensional saturated groundwater flow equation to the Galerkin finite element method. The simulation of solute transport is carried out by using the random walk particle tracking model with CD(constant displacement) scheme in which the time interval is automatically adjusted. In this study, the spatial behavior of a solute is analyzed by the longitudinal center-of-mass displacement, longitudinal spatial spread moment and longitudinal plume skewness.

  • PDF

A Solute Transport Analysis around Underground Storage Cavern by using Eigenvalue Numerical Technique (고유치 수치기법을 이용한 지하저장공동 주위의 용질이동해석)

  • Chung, Il-Moon;Kim, Ji-Tae;Cho, Won-Cheol;Kim, Nam-Won
    • The Journal of Engineering Geology
    • /
    • v.18 no.4
    • /
    • pp.381-391
    • /
    • 2008
  • The eigenvalue technique is introduced to overcome the problem of truncation errors caused by temporal discretization of numerical analysis. The eigenvalue technique is different from simulation in that only the space is discretized. The spatially discretized equation is diagonized and the linear dynamic system is then decoupled. The time integration can be done independently and continuously for any nodal point at any time. The results of eigenvalue technique are compared with the exact solution and FEM numerical solution. The eigenvalue technique is more efficient than the FEM to the computation time and the computer storage in the same conditions. This technique is applied to the solute transport analysis in nonuniform flow fields around underground storage caverns. This method can be very useful for time consuming simulations. So, a sensitivity analysis is carried out by using this method to analyze the safety of caverns from nearly located contaminant sources. According to the simulations, the reaching time from source to the nearest cavern may takes 50 years with longitudinal dispersivity of 50 m and transversal dispersivity of 5 m, respectively.

Derivation of the First-Order Mass-Transfer Equation for a Diffusion-Dominated Zone of a 2-D Pore (2차원으로 구현한 다공성 매질의 확산주도영역에 관한 1차 물질이동 방정식의 유도)

  • Kim, Young-Woo;Seo, Byong-Min;Hwang, Seung-Min;Park, Cha-Sik
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.34 no.2
    • /
    • pp.99-103
    • /
    • 2010
  • A new analytic solution was derived for the diffusion into or from an immobile zone of a rectangular 2-D pore. For a long time, the new solution converges to a traditional mobile-immobile zone (MIM) model, but only if the latter is used with an apparent initial concentration that is smaller by almost 20% than the true one. This is the tradeoff for using a simple MIM model instead of an exact model based on the diffusion equation. The mass-transfer coefficient was found to be constant for a sufficiently long time; it was proportional to the molecular diffusion and inversely proportional to the square of the pore depth. The mass-transfer coefficient was time-dependent for a sufficiently short time and may be significantly larger than its asymptotic value.

Analysis of Solute Transport based on Electrical Resistance Measurements from Laboratory Column Tests (전기저항센서가 부착된 주상실험기에서 측정된 전기저항값을 이용한 용질의 이동해석)

  • Kim, Yong-Sung;Kim, Jae-Jin;Park, Junboum
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.4C
    • /
    • pp.231-238
    • /
    • 2008
  • A column testing device capable of measuring the electrical resistivity of soil at 3 different locations was developed to verify applicability of bulk electrical conductivity (BEC) breakthrough curves in monitoring contaminant transport. Tracer injection tests were conducted with three different types of saturated sands to obtain average linear velocities and longitudinal hydrodynamic dispersion coefficients based on BEC breakthrough curves and effluent solute breakthrough curves. Comparative analysis of transport parameters obtained from curve fitting the results into the analytical solutions confirmed the validity of resistance measurements in estimating time-continuous resident solute concentration. Under the assumption that a linear relationship exists between ${\sigma}_{sat}-{\sigma}_w-C$, the BEC breakthrough curves are able to effectively reduce the laborious and time-consuming processes involved in the conventional method of sampling and analysis. In order to reduce possible uncertainties in analyzing the BEC breakthrough curves, it was recommended that resistance measurements take place nearby the effluent boundary. In addition, a sufficient electrical contrast or difference in the electrical conductivity of the influent and the saturating solution is required to conduct reliable analysis.

Radionuclides Transport from the Hypothetical Disposal Facility in the KURT Field Condition on the Time Domain (KURT 부지 환경에 위치한 가상의 처분 시설에서 누출되는 방사성 핵종의 이동을 Time Domain에서 해석하는 방법에 관한 연구)

  • Hwang, Youngtaek;Ko, Nak-Youl;Choi, Jong Won;Jo, Seong-Seock
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.10 no.4
    • /
    • pp.295-303
    • /
    • 2012
  • Based on the data observed and analyzed on a groundwater flow system in the KURT (KAERI Underground Research Tunnel) site, the transport of radionuclides, which were assumed to be released at the supposed position, was calculated on the time-domain. A groundwater pathway from the release position to the surface was identified by simulating the groundwater flow model with the hydrogeological characteristics measured from the field tests in the KURT site. The elapsed time when the radionuclides moved through the pathway is evaluated using TDRW (Time Domain Random Walk) method for simulating the transport on the time-domain. Some retention mechanisms, such as radioactive decay, equilibrium sorption, and matrix diffusion, as well as the advection-dispersion were selected as the factors to influence on the elapsed time. From the simulation results, the effects of the sorption and matrix diffusion, determined by the properties of the radionuclides and underground media, on the transport of the radionuclides were analyzed and a decay chain of the radionuclides was also examined. The radionuclide ratio of the mass discharge into the surface environment to the mass released from the supposed repository did not exceed $10^{-3}$, and it decreased when the matrix diffusion were considered. The method used in this study could be used in preparing the data on radionuclide transport for a safety assessment of a geological disposal facility because the method could evaluate the travel time of the radionuclides considering the transport retention mechanism.

The Measurements of Thermodynamic Properties for the Solute Transfer in RPLC with a $C_{18}$ Stationary Phase ($C_{18}$ 정지상으로 구성된 역상 액체 크로마토그래피에서 용질전이의 열역학적 특성측정)

  • Cheong, Won Jo;Kang, Young Ryul;Kang, Gyoung Won;Keum, Young Ik
    • Journal of the Korean Chemical Society
    • /
    • v.43 no.6
    • /
    • pp.656-662
    • /
    • 1999
  • We have obtained retention data of benzene, toluene, ethylbenzene, phenol, and acetophenone at 25, 30, 35, 40, 45 and 50 $^{\circ}C$ in 30/70, 40/60, 50/50, 60/40, 70/30, and 80/20 (v/v %) methanol/water eluents using a $C_18$ phase with a high ligand density. We drew van't Hoff plots from the data, and computed enthalpies and entropies of solute transfer from the mobile to the stationary phase. The cavity formation effect was found the major factor that governs the solute distribution between the mobile and stationary phases. The hydrophobic effect became significant in highly aqueous mobile phases. We also concluded that the Shodex C18-5B stationary phase was a polymer-like phase with a high ligand density, and followed a partially adsorption-like mechanism.

  • PDF