• Title/Summary/Keyword: 용액 공정

Search Result 1,338, Processing Time 0.027 seconds

Enhancement of Penetration by Using Mechenical Micro Needle in Textile Strain Sensor (텍스타일 스트레인 센서에 마이크로 니들을 이용한 전도성입자 침투력 향상)

  • Hayeong Yun;Wonjin Kim;Jooyong Kim
    • Science of Emotion and Sensibility
    • /
    • v.25 no.4
    • /
    • pp.45-52
    • /
    • 2022
  • Recently, interest in and demand for sensors that recognize physical activity and their products are increasing. In particular, the development of wearable materials that are flexible, stretchable, and able to detect the user's biological signals is drawing attention. In this study, an experiment was conducted to improve the dip-coating efficiency of a single-walled carbon nanotube dispersion solution after fine holes were made in a hydrophobic material with a micro needle. In this study, dip-coating was performed with a material that was not penetrated, and comparative analysis was performed. The electrical conductivity of the sensor was measured when the sensor was stretched using a strain universal testing machine (Dacell Co. Ltd., Seoul, Korea) and a multimeter (Keysight Technologies, Santa Rosa, CA, USA) was used to measure resistance. It was found that the electrical conductivity of a sensor that was subjected to needling was at least 16 times better than that of a sensor that was not. In addition, the gauge factor was excellent, relative to the initial resistance of the sensor, so good performance as a sensor could be confirmed. Here, the dip-coating efficiency of hydrophobic materials, which have superior physical properties to hydrophilic materials but are not suitable due to their high surface tension, can be adopted to more effectively detect body movements and manufacture sensors with excellent durability and usability.

Performance Evaluation of Loss Functions and Composition Methods of Log-scale Train Data for Supervised Learning of Neural Network (신경 망의 지도 학습을 위한 로그 간격의 학습 자료 구성 방식과 손실 함수의 성능 평가)

  • Donggyu Song;Seheon Ko;Hyomin Lee
    • Korean Chemical Engineering Research
    • /
    • v.61 no.3
    • /
    • pp.388-393
    • /
    • 2023
  • The analysis of engineering data using neural network based on supervised learning has been utilized in various engineering fields such as optimization of chemical engineering process, concentration prediction of particulate matter pollution, prediction of thermodynamic phase equilibria, and prediction of physical properties for transport phenomena system. The supervised learning requires training data, and the performance of the supervised learning is affected by the composition and the configurations of the given training data. Among the frequently observed engineering data, the data is given in log-scale such as length of DNA, concentration of analytes, etc. In this study, for widely distributed log-scaled training data of virtual 100×100 images, available loss functions were quantitatively evaluated in terms of (i) confusion matrix, (ii) maximum relative error and (iii) mean relative error. As a result, the loss functions of mean-absolute-percentage-error and mean-squared-logarithmic-error were the optimal functions for the log-scaled training data. Furthermore, we figured out that uniformly selected training data lead to the best prediction performance. The optimal loss functions and method for how to compose training data studied in this work would be applied to engineering problems such as evaluating DNA length, analyzing biomolecules, predicting concentration of colloidal suspension.

Comparison and evaluation of methods for the measurement of total nitrogen in wastewater (고농도 질소함유 폐수의 총질소 분석법 비교·평가)

  • Choi, Sung-Deuk;Chang, Yoon-Seok
    • Analytical Science and Technology
    • /
    • v.20 no.1
    • /
    • pp.25-32
    • /
    • 2007
  • The measurement methods for total nitrogen in wastewater containing a high concentration of nitrogen were evaluated. (1) The UV spectrophotometry, (2) reduction-distillation Kjeldahl, (3) total Kjeldahl nitrogen, and (4) ion chromatography methods were applied. The experimental procedure of the UV spectrophotometric method was simple, but it produced large errors deriving from the dilution of samples and calibration standards. While, the reduction-distillation Kjeldahl method didn't need dilution, but the amount of Devarda's alloy and NaOH lead to large errors up to 50 mg/L. The levels of total nitrogen measured by each method were as follows: reduction-distillation Kjeldahl ($568.6{\pm}38.7mg/L$) > UV spectrophotometry ($527.3{\pm}9.6mg/L$) > total Kjeldahl nitrogen method ($494.7{\pm}21.4mg/L$) > ion chromatography method ($417.9{\pm}7.3mg/L$). Therefore, the reduction-distillation Kjeldahl method is preferred for wastewater with the high concentration of nitrogen. Optimal conditions for each experimental procedure, however, are needed to be confirmed, and the Standard Operation Procedure (SOP) for total nitrogen is required for reliable measurements.

Electrical response of tungsten diselenide to the adsorption of trinitrotoluene molecules (폭발물 감지 시스템 개발을 위한 TNT 분자 흡착에 대한 WSe2 소자의 전기적 반응 특성 평가)

  • Chan Hwi Kim;Suyeon Cho;Hyeongtae Kim;Won Joo Lee;Jun Hong Park
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.33 no.6
    • /
    • pp.255-260
    • /
    • 2023
  • As demanding the detection of explosive molecules, it is required to develop rapidly and precisely responsive sensors with ultra-high sensitivity. Since two-dimensional semiconductors have an atomically thin body nature where mobile carriers accumulate, the abrupt modulation carrier in the thin body channel can be expected. To investigate the effectiveness of WSe2 semiconductor materials as a detection material for TNT (Trinitrotoluene) explosives, WSe2 was synthesized using thermal chemical vapor deposition, and afterward, WSe2 FETs (Field Effect Transistors) were fabricated using standard photo-lithograph processes. Raman Spectrum and FT-IR (Fourier-transform infrared) spectroscopy reveal that the adsorption of TNT molecules induces the structural transition of WSe2 crystalline. The electrical properties before and after adsorption of TNT molecules on the WSe2 surface were compared; as -50 V was applied as the back gate bias, 0.02 μA was recorded in the bare state, and the drain current increased to 0.41 μA with a dropping 0.6% (w/v) TNT while maintaining the p-type behavior. Afterward, the electrical characteristics were additionally evaluated by comparing the carrier mobility, hysteresis, and on/off ratio. Consequently, the present report provides the milestone for developing ultra-sensitive sensors with rapid response and high precision.

Carbon Nanosphere Composite Ultrafiltration Membranes with Anti-Biofouling Properties and More Porous Structures for Wastewater Treatment Using MBRs (분리막 생물반응기를 활용한 폐수처리를 위한 생물오염방지 특성 및 다공성 구조를 가진 탄소나노구체 복합 한외여과막)

  • Jaewoo Lee
    • Membrane Journal
    • /
    • v.34 no.1
    • /
    • pp.38-49
    • /
    • 2024
  • Wastewater treatment using membrane bioreactors has been extensively used to alleviate water shortage and pollution by improving the quality of the treated water discharged into the environment. However, membrane biofouling persistently holds back an MBR process by reducing the process efficiency. Herein, we synthesized carbon nanospheres (CNSs) with many hydrophilic oxygen groups and utilized them as an additive to prepare high-performance ultrafiltration (UF) membranes with hydrophilicity and porous pore structure. CNSs were found to form crescent-shaped pores on the membrane surface, increasing the mean surface pore size by about 40% without causing significant defects larger than bubble points, as the CNS content increased by 4.6 wt%. In addition, the porous pore structure of CNS composite membranes was also attributable to the CNS's isotropic morphologies and relatively low particle number density because the aforementioned properties contributed to preventing the polymer solution viscosity from soaring with the loading of CNS. However, too porous structure compromised the mechanical properties, such that CNS2.3 was the best from a comprehensive consideration including the pore structure and mechanical properties. As a result, CNS2.3 showed not only 2 times higher water permeability than CNS0 but also 5 times longer operation duration until membrane cleaning was required.

The Separation of Vanadium and Tungsten from Spent Selective Catalytic Reduction Catalyst Leach Solution by Alamine 336 (탈질 폐촉매 침출액으로부터 Alamine 336에 의한 바나듐과 텅스텐의 분리)

  • Seongsu Kang;Gyeonghye Moon;In-Hyeok Choi;Dakyeong Baek;Kyoungkeun Yoo
    • Resources Recycling
    • /
    • v.33 no.3
    • /
    • pp.30-37
    • /
    • 2024
  • In this study, we investigated the separability of vanadium and tungsten from spent SCR (Selective Catalytic Reduction) catalyst leach solution by reduction of vanadium and solvent extraction using Alamine 336 and conducted experiments to optimize process conditions. It is difficult to separate vanadium and tungsten due to their similar chemical behavior, but tungsten can be selectively extracted from acidic solution when vanadium extraction is prevented by reducing anionic pentavalent vanadium to cationic tetravalent vanadium. The results showed that NaHSO3 was most suitable as a reducing agent, and the extraction efficiency of vanadium decreased and the separation efficiency increased as the amount of reducing agent added, reaction time, and temperature increased. When reducing NaHSO3 1.5 eq, 60 min, and 60℃, which are optimal conditions of reduction, vanadium and tungsten were effectively separated with vanadium extraction efficiency of 5.8%, tungsten extraction efficiency of 99%, and separation factor of vanadium and tungsten of 7,564.

Simultaneous Absorption of NO and SO2 in Flue gas Using Fe(II)EDTA2- absorbent and Electrochemical Recovery Technology for Gas Reabsorption (Fe(II)EDTA2- 흡수액을 이용한 배가스내 NO, SO2 동시 흡수 및 재흡수를 위한 전기화학적 회수기술 연구)

  • Yoon Hee Kim;Jiyull Kim;Sang Bin Kim;Ji Bong Joo
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.32 no.3
    • /
    • pp.43-56
    • /
    • 2024
  • In this study, we investigate wet absorption process and the performance and regeneration of Fe(II)EDTA2- absorbents, electrodeposition of the reducing agent for recovery of metal powder and re-absorption performance using regenerated absorbed for the simultaneous removal of nitrogen oxides (NO) and sulfur oxides (SO2) emitted from flue gas. As a result of a simultaneous absorption experiment of NO and SO2 under the presence of oxygen, the antagonistic effects of SO2 and O2 in the absorption solution resulted in the regeneration of Fe(III)EDTA- and Fe(II)EDTA-NO2- to Fe(II)EDTA2-, inducing the maintained neutral pH and maintained NO2 absorption, thereby greatly improving the simultaneous absorption performance of NO and SO2. In addition, after regenerating the Fe(II)EDTA2- absorbent with Zn metal powder as a reducing agent, electrodeposition was performed to recover the remaining reducing agent. During the electrodeposition process, the high Zn recovery efficiency (approximately 57.50%) was observed at an applied voltage of 4 V, and the total absorption amount of NO was also significantly improved.

Study of Solidification by Using Portland and MSG(micro silica grouting) Cements for Metal Mine Tailing Treatment (금속 광미 처리를 위한 포틀랜드 시멘트와 MSG(micro silica grouting) 시멘트 고형화 실증 실험 연구)

  • Jeon, Ji-Hye;Kim, In-Su;Lee, Min-Hee;Jang, Yun-Young
    • Economic and Environmental Geology
    • /
    • v.39 no.6 s.181
    • /
    • pp.699-710
    • /
    • 2006
  • Batch scale experiments to investigate the efficiency of the solidification process for metal mine tailing treatment were performed. Portland and MSG (micro silica pouting) cements were used as solidifier and three kinds of mine tailings (located at Gishi, Daeryang, and Aujeon mine) were mixed with cements to paste solidified matrices. Single axis com-pressible strengths of solidified matrices were measured and their heavy metal extraction ratios were calculated to investigate the solidification efficiency of solidified matrices created in experiments. Solidified matrices ($5cm{\times}5cm{\times}5cm$) were molded from the paste of tailing and cements at various conditions such as different tailing/cement ratio, cement/water ratio, and different cement or tailing types. Compressible strengths of solidified matrices after 7, 14, and 28 day cementation were measured and their strengths ranged from 1 to $2kgf/mm^2$, which were higher than Korean limit of compressible strength for the inside wall of the isolated landfill facility ($0.21kgf/mm^2$). Heavy metal extractions from intact tailings and powdered matrices by using the weak acidic solution were performed. As concentration of extraction solution for the powdered solidified matrix (Portland cement + Gishi tailing at 1:1 w.t. ratio) decreased down to 9.7 mg/L, which was one fifth of As extraction concentration for intact Gishi tailings. Pb extraction concentration of the solidified matrix also decreased to lower than one fourth of intact tailing extraction concentration. Heavy metal extraction batch experiments by using various pH conditions of solution were also performed to investigate the solidification efficiency reducing heavy metal extraction rate from the solidified matrix. With pH 1 and 13 of solution, Zn and Pb concentration of solution were over the groundwater tolerance limit, but at pH $1{\sim}13$ of solution, heavy metal concentrations dramatically decreased and were lower than the groundwater tolerance limit. While the solidified matrix was immerged Into very acidic or basic solution (pH 1 and 13), pH of solution changed to $9{\sim}10$ because of the buffering effect of the matrix. It was suggested that the continuous extraction of heavy metals from the solidified matrix is limited even in the extremely high or low pH of contact water. Results of experiments suggested that the solidification process by using Portland and MSG cements has a great possibility to treat heavy metal contaminated mine tailing.

Optimization of Conditions for the Microencapsulation of ${\alpha}-Tocopherol$ and Its Storage Stability (${\alpha}-Tocopherol$ 미세캡슐화의 최적화 및 저장안정성 규명)

  • Chang, Pahn-Shick;Ha, Jae-Seok;Roh, Hoe-Jin;Choi, Jin-Hwan
    • Korean Journal of Food Science and Technology
    • /
    • v.32 no.4
    • /
    • pp.843-850
    • /
    • 2000
  • We have produced the microcapsule composed of ${\alpha}-tocopherol$ as a core material (Cm) and the gelatinized polysaccharide as a wall material (Wm). Firstly, we have developed a simple, sensitive, and quantitative analysis method of the microencapsulation product using 5% cupric acetate pyridine solution. We could then optimize all the conditions for the microencapsulation process such as the ratio of [Cm] to [Wm], the temperature of dispersion fluid, and the emulsifier concentration using response surface methodology (RSM). As for the microencapsulation of ${\alpha}-tocopherol$, the regression model equation for the yield of microencapsulation (YM, %) to the change of an independent variable could be predicted as follows : YM=99.77-1.76([Cm]:[Wm])-1.72$([Cm]\;:\;[Wm])^2$. From the ridge of maximum response, the optimum conditions for the microencapsulation of ${\alpha}-tocopherol$ were able to be determined as the ratio of [Cm] to [Wm] of 4.6:5.4(w/w), the emulsifier concentration of 0.49%, and dispersion fluid temperature of $25.5^{\circ}C$, respectively. Finally, the microcapsules produced under the optimal conditions were applied for the analysis of storage stability. The optimal conditions for the storage were found to be the values of pH 9.0 and $25{\sim}35^{\circ}C$. And the storage stability of the microcapsules containing ${\alpha}-tocopherol$ were higher than 99% for a week at pH 9.0 and $25^{\circ}C$.

  • PDF

Treatment Characteristics of Soil Clothing Contact Oxidation Process using Bio-media (생물담체를 충진한 토양피복 산화접촉공정의 하수처리특성)

  • Kim, Hong-Jae;Kang, Jae-Hee;Lee, Ki-Seok;Motoki, Kubo;Kang, Chang-Min;Chung, Seon-Yong
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.27 no.4
    • /
    • pp.414-419
    • /
    • 2005
  • This study was performed to compare the treatment efficiencies of two media, newly developed Bio-rock and conventional gravel, in soil clothing contact oxidation process. The composition of synthetic wastewater were $COD_{Cr}$ $150{\sim}370\;mg/L$, $BOD_5$ $150{\sim}270\;mg/L$, T-N $20{\sim}60\;mg/L$, T-P $5{\sim}25\;mg/L$, pH 7 and 2 mL/L of trace element solution. The experiment using two reactors was comparatively conducted for the flow rate of 40 L/d for 13 months, respectively. Initially Bio-rock reactor was increased to pH 12 due to $Ca(OH)_2$ with hydration of cement, but gravel reactor was dropped to pH 4 due to the degradation of organic material and nitrification. This significant pH variation deteriorated the growth and activity of microorganism. But the high pH of Bio-rock seems favorite to ammonia stripping and precipitation of phosphate. Such pH variation of Bio-rock and gravel reactors were finally stabilized to pH 8 and pH 6, respectively. The removal efficiencies of organic compounds from Bio-rock reactor were 96% of $COD_{Cr}$, 98% of $BOD_5$, 80% of T-N and 85% of T-P which stably coping against variation of influent concentration. But those of gravel reactor were 96% of $COD_{Cr}$, 96% of $BOD_5$, 42% of T-N and 40% of T-P, respectively. The Bio-rock was 2 times higher than T-N and T-P in treatment efficiency. And electron-microscopic examination showed that Bio-rock was more favorable to microbial adherence than gravel. The microbial populations were $5.2{\times}10^6\;CFU/mL$ of Bio-rock reactor compared to $2.6{\times}10^6\;CFU/mL$ in gravel reactor. In result Bio-rock was favor to microbial adherence and high treatment efficiency in spite of variation of influent concentration which had the advantages in saving running time and reducing site requirement.