• Title/Summary/Keyword: 용암

Search Result 273, Processing Time 0.025 seconds

XRF Analysis and Polarizing Microscopic Study of the Lava Cave Formation, Korea, Japan and Russia (한국, 일본, 러시아 용암동굴 형성층의 형광X선 분석과 편광현미경적 연구)

  • Sawa, Isao;Furuyama, Katsuhiko;Ohashi, Tsuyoshi;Kim, Chang-Sik;Kashima, Naruhiko
    • Journal of the Speleological Society of Korea
    • /
    • no.74
    • /
    • pp.23-31
    • /
    • 2006
  • (1) Kaeusetgul Cave in Kimnyong-Ri, Jeju-Do, Korea. Kaeuset-gul Cave (KC) is situated in NNE area of the Manjang-gul cave (125m a.s.l.). Kaeuset-gul Cave lies at $126^{\circ}45'22"$ E in longitude and $33^{\circ}33'09"$ N in latitude. The coast belong Kimnyeong-Ri, Kujwa-eup, Jeju-Do. Altitude of the cave-entrance is 10m and length of the cave is 90m. Lava hand-specimens of KC are studied by X-ray fluorescence analysis (XRF). Average major chemical components of specimens from KC is as follows (wt.%); $SiO_2=47.03$, $TiO_2=3.16$, $Al_2O_3=18.41$, FeO*=13.53, MnO=0.14, MgO=5.05, CaO=8.66, $Na_2O=2.81$, $K_2O=0.67$, $P_2O_5=0.55$ in KC. Polarizing microscopic studyindicates that these specimens are described of alkali-basalt. (2) Tachibori Fuketsu (Cave) in Shizuoka Prefecture, Fuji Volcano, Japan Tachibori Fuketsu lies attoward the south in skirt of the Fuji volcano, $138^{\circ}42'04"$ east longitude and $35^{\circ}18'00"$ north latitude. The location of cave entrance is 2745, Awakura, Fujinomiya-shi, Shizuoka Prefecture. The above sea level and length of Tachibori Fuketsu are 1,170m and 82m. Average major chemical components of specimens from cave areas follows (Total 100 wt.%) ; ($SiO_2$=50.52, $TiO_2$=1.69, $Al_2O_3$=15.47, FeO*=13.13, MnO=0.20, MgO=5.97, CaO=9.17, $Na_2O$=2.52, $K_2O$=0.94 and $P_2O_5=0.40).$ Polarizing microscopic study indicates that these specimens may belong to tholeiite-basalt series. According to polarizing microscopic study, Au (Augite), P1 (Plagioclase), and O1 (Olivine) are contained as phenocryst minerals. (3) Gorely Cave in Kamchatka Peninsula, Russia Gorely caldera is located at the southeastern part of Kamchatka Peninsula, about 75km southwest of Petropavlovsk-Kamchatskiy.. Gorely lava caves are situated in NHE area of Mt. Gorely volcano (1829m a.s.1.). One of lava cave (Go-9612=K-1) lies at $158^{\circ}00'22"$ east longitude and $52^{\circ}36'18"$ north latitude. The elevation of cave entrance is about 990m a.s.1. and the main cave extends in the NNW direction for about 50m by 15m wide and 5m in depth. The cave of K-3is near the K-1 cave. "@Lava hand-specimens K-1 and K-3 caves are studied by X-ray fluorescence analysis and polarizing microscopic observation. Average major chemical components of specimens from these caves are as follows (wt.%) ;($SiO_2$=55.12, $TiO_2$=1.25, $Al_2O_3$=16.07, T-FeO* =9.41, MnO=0.16, MgO=5.01, CaO=7.21, $Na_2O$=3.39, $K_2O$=1.92, $P_2O_5$=0.45) and these values indicate that the Gorely basaltic andesite belong to high alumina basalt. Polarizing microscopic study indicates that these specimens are described of Augite andesite.

The Forming Process of the Maisan and Nearby Famous Mountains and the Related Mountain Ranges and Water Systems (마이산과 주변 명산의 형성과정과 그에 관련된 산맥과 수계 변화)

  • Oh, Changwhan;Lee, Seunghwan;Lee, Boyoung
    • The Journal of the Petrological Society of Korea
    • /
    • v.26 no.3
    • /
    • pp.201-219
    • /
    • 2017
  • The Jinan Basin which includes Maisan locates in the central part of the northern boundary of the Yeongnam Massif. The basement rocks of the Jinan Basin and surrounding area are Precambrian gneiss and Mesozoic granite which were exposed on the surface before Cretaceous. The Jinan Basin, one of the Cretaceous pull-apart basins in South Korea, formed along the Yongdong-Gwangju fault system. Maisan is composed of conglomerate deposited in the eastern slope of the Jinan Basin showing the shape of horse ears and the unusual topography where many tafonies were developed. The strike slip fault that caused the Jinan Basin was connected to the deep depth so that the magma formed at 200 km depth could have extruded on the surface causing active volcanic activity in and around the Jinan basin. As a result, Cheonbansan composed of pyroclastic rocks, Gubongsan consisting of volcanic neck and WoonilamBanilam formed by the lava flow, appear around Maisan forming a specific terrain. After the formation of the Jinan Basin and surrounding volcanic rocks, they uplifted to form mountains including Masian; the uplifting time may be ca. 69-38 Ma. At this time, the Noryeong mountain range may be formed in the regions which extended from Chugaryeong through Muju and Jinan to Hampyeong dividing the Geumgang and Seomjingang water systems. Due to the ecological barrier, the Noryeong mountain range, Coreoleuciscus splendidus living in the Geumgang water systems was differentiated from that in the Soemjingang water system. In addition, the Geumgang and Mangyeong-Dongjingang water systems were separated by the Unjangsan, which developed in the NNW direction. As a result, diverse ecosystem have been established in and around Maisan and at the same time, diverse cultural and historical resources related to Maisan's unique petrological features, were also established. Therefore, Maisan and surrounding area can be regarded as a place where a geotourism can be successfully established by combining the ecological, cultural and historical resources with a geological heritage. Therefore Maisan and surrounding areas have a high possibility to be a National Geopark and UNESCO Global Geopark.

The Effective Resonance of Caves & Records of a Cave Concert (동굴의 자연음향 효과, 그리고 음악회장 운영사례)

  • Hyun, Haeng-Bok
    • Journal of the Speleological Society of Korea
    • /
    • no.95
    • /
    • pp.35-49
    • /
    • 2009
  • Ever since the beginning of time, caves not only have offered a place to live for humans but they have also been used as cultural spaces. That is, in the event of making some sounds in a location within the cave, the sound that is created is greatly magnified and sounds out as if it is being amplified from a giant megaphone. This, as we well know it, is known as the resonance effect. Here, the cave itself appears to function as a massive wind instrument. Especially in cases like the Altamira Cave (Spain) where cave paintings were found, the point where the cave drawings were found has commonalities in that it is a wide space and that it is usually discovered together with flutes and drums that are made with mammoth bones. We need to focus on this point. We can infer from these facts that the prehistoric people have carried out cultural activities along with their incantation rituals within those caves. In the meantime, amongst the Korean traditional arts, in the case of pansori which is a representative vocal genre, there have been examples where caves were used as practicing locations for those people who are training to perfect their singing. This is known as toguldoggong(土窟獨功) which literally means 'obtaining one's own art by oneself in the earth cave by practicing incessantly'. This process along with pokpodoggong (瀑布獨功) (same as above except that the location is by the waterfall) is the final training stage in order to become a recognized virtuoso on the part of the apprentice. This could be compared to the final annealing and finishing process of producing a metalwork. This has been a long tradition followed by most Korean traditional artists in order to perfect their sound which is harmonious with nature within natural surroundings. By honing in on this point, I have come to think about this matter repeatedly while coaching the university students in vocal singing. In short, I came to the conclusion that "the making of natural sounds will be obtained naturally within natural surroundings like caves!" Consequently, The Society for Studying Cave Sounds was inaugurated on January 1992 along with some of my students. We made use of times like vacations to go around exploring caves all over Jeju and carried out investigations of sounds along with cave exploration on an experimental basis. After 5 years, in September of 1997, we were able to host the first ever cave concert domestically at the Whale Nostril Cave(東岸鯨窟) on Wu-do. After that, we have been hosting the cave concert once every year. We have achieved a record of a total of 14 cave concerts until 2009 of this year. Out of these, 2 were held in Seokhwaeam Cave in Kangwon Province, another two were held in Manjang Cave which is a lava cave, and the remaining 10 were held in the Whale Nostril Cave of Wu-do. Along with that, I have carried out a special recording for the production of a cave music CD in May of 1999. This paper was written and organized by using the main materials that were derived from the experiences of using caves as concert halls in the past. It is hoped that this cave concert will offer a very unique experience to tourists who come to Jeju every year and give them the best possible superior natural sound effect that only Jeju caves can offer.

Revised Fission-track Ages and Chronostratigraphies of the Miocene Basin-fill Volcanics and Basements, SE Korea (한국 동남부 마이오세 분지 화산암과 기반암의 피션트랙 연대 재검토와 연대층서 고찰)

  • Shin, Seong-Cheon
    • The Journal of the Petrological Society of Korea
    • /
    • v.22 no.2
    • /
    • pp.83-115
    • /
    • 2013
  • Erroneous fission-track (FT) ages caused by an inappropriate calibration in the initial stage of FT dating were redefined by re-experiments and zeta calibration using duplicate samples. Revised FT zircon ages newly define the formation ages of Yucheon Group rhyolitic-dacitic tuffs as Late Cretaceous to Early Paleocene ($78{\pm}4$ Ma to $65{\pm}2$ Ma) and Gokgangdong rhyolitic tuff as Early Eocene ($52.1{\pm}2.3$ Ma). In case of the Early Miocene volcanics, FT zircon ages from a dacitic tuff of the upper Hyodongri Volcanics ($21.6{\pm}1.4$ Ma) and a dacitic lava of the uppermost Beomgokri Volcanics ($21.3{\pm}2.0$ Ma) define chronostratigraphies of the upper Beomgokri Group, respectively in the southern Eoil Basin and in the Waeup Basin. A FT zircon age ($19.8{\pm}1.6$ Ma) from the Geumori dacitic tuff defines the time of later dacitic eruption in the Janggi Basin. Based on FT zircon ages for dacitic rocks and previous age data (mostly K-Ar whole-rock, partly Ar-Ar) for basaltic-andesitic rocks, reference ages are recommended as guides for stratigraphic correlations of the Miocene volcanics and basements in SE Korea. The times of accumulation of basin-fill sediments are also deduced from ages of related volcanics. Recommended reference ages are well matched to the whole stratigraphic sequences despite complicated basin structures and a relative short time-span. The Beomgokri Group evidently predates the Janggi Group in the Eoil-Waeup basins, while it is placed at an overlapped time-level along with the earlier Janggi Group in the Janggi Basin. Therefore, the two groups cannot be uniformly defined in a sequential order. The Janggi Group of the Janggi Basin can be evidently subdivided by ca. 20 Ma-basis into two parts, i.e., the earlier (23-20 Ma) andesitic-dacitic and later (20-18 Ma) basaltic strata.

The Distribution and Geomorphic Changes of Natural Lakes in East Coast Korea (한반도 동해안의 자연호 분포와 지형 환경 변화)

  • Lee, Min-Boo;Kim, Nam-Shin;Lee, Gwang-Ryul
    • Journal of the Korean association of regional geographers
    • /
    • v.12 no.4
    • /
    • pp.449-460
    • /
    • 2006
  • This study aims to analyze distribution of natural lakes including lagoonal lake(lagoon) and tributary dammed lake(tributary lake) and calculate the size, morphology in order to interpret time-serial change of lakes using methodology of remote sensing images(1990s), GIS and topographic maps(1920s) in east coast of Korean Peninsular. Analysis results show that in 1990s, there are 57 natural lakes, with the total size of $75.62km^2$ over size $0.01km^2$. marine-origin lagoons are 48 with total size of $64.85km^2$, composing 85% of total natural lake, and the largest lagoon is Beonpo in Raseon City. Tributary lakes have been formed by damming of tributary channels by fluvial sand bars from main stream, located nearby at coastal zone, similar to lagoon sites. Large tributary lake, Jangyeonho, is developed in lava plateau dissection valley of Eorang Gun, Hamnam Province. There are more distributed at Duman River mouth$\sim$Cheongjin City, Heungnam City$\sim$Hodo Peninsular and Anbyeon Gun$\sim$Gangreung City. Geomorphometrically, correlation of size to circumference is very high, but correlation of size to shape irregularity is very low. The direction of lagoonal coast, NW-SE and NE-SW are predominated due to direction of tectonic structure and longshore currents. The length of the river into lake are generally short, maximum under 15km, and lake size is smaller, degree of size decreasing is higher. Geomorphic patterns of the lake location are classified as coast-hill range, coastal plain, coastal plain-channel valley, coastal plain-hill range and channel valley-hill range. During from 1920s to 1990s, change with lake size decreasing is highest at coastal plain-channel valley, next is coastal plain. Causes of the size decreasing are fluvial deposition from upper rivers and human impacts such as reclamation.

  • PDF

Antirapakivi Mantled Feldspars from Sanbangsan Trachyte Lava Dome, Jeju Volcanic Field, Korea (산방산용암돔 조면암에서 산출되는 장석의 안티라파키비 조직)

  • Yun, Sung-Hyo
    • Korean Journal of Mineralogy and Petrology
    • /
    • v.33 no.2
    • /
    • pp.87-97
    • /
    • 2020
  • The compositions of the phenocrystic feldspars of the Sanbangsan trachyte range from labradorite(An53.6) to andesine(An35.4), and of the microphenocrysts and laths range from andesine(An31.2) to oligoclase(An18.7). Mantled feldspar which forms a thin rim around the phenocrysts and microphenocrysts, is anorthoclase(Or20.5An9.4) to sanidine(Or49.2An1.4). Phenocrystic plagioclase, which shows a distinct zonal structure, represents an oscillatory zoning in which the An content of the zone repeatedly increases or decreases between andesine (An39.3) and labradorite (An51.3) from the core toward the rim, and the rim of the phenocrysts is surrounded by alkali feldspar(Or31.9-39.4Ab63.2-57.0An4.9-3.7), showing the antirapakivi texture. Microphenocryst which does not represent the antirapakivi texture, shows the normal zoning with a decreasing An content (An36.4→An25.6) as it moves outward from the center of a crystal. As a result of X-ray mapping of K, Ca, and Na elements for the feldspar phenocrysts representing the typical zonal structure, shows the oscillatory zoning that six zones show the distinctive compositional differences, and the rims are mantled by alkali feldspar to indicate the antirapakivi texture. The groundmass is composed of K-enriched, Ca-poor alkali feldspar. The antirapakivi texture of feldspar which appears in Sanbangsan trachyte, may have been formed in mixing systems as a result of the juxtaposition of near liquidus melt, rich in alkali feldspar components(trachytic magma), with plagioclase phenocrysts and microphenocrysts already crystallized in a more mafic system.

Taxonomical Classification of Yongdang Series (용당통의 분류)

  • Song, Kwan-Cheol;Hyun, Byung-Geun;Moon, Kyung-Hwan;Jeon, Seung-Jong;Lim, Han-Cheol
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.42 no.5
    • /
    • pp.393-398
    • /
    • 2009
  • This study was conducted to reclassify Yongdang series based on the second edition of Soil Taxonomy : A Basic System of Soil Classification for Making and Interpreting Soil Surveys. Morphological properties of typifying pedon of Yongdang series were investigated and physico-chemical properties were analyzed according to Soil Survey Laboratory Methods Manual. The typifying pedon of Yongdang series has dark reddish brown (5YR 2/3) silt loam Ap horizon (0~14 cm), dark brown (7.5YR 2/3) silt loam BA horizon (14~32 cm), dark brown (7.5YR 2/3) clay loam Bt horizon (32~57 cm), dark yellowish brown (10YR 4/6) silty clay loam Btx1 horizon (57~110 cm), and dark yellowish brown (10YR 4/6) silty clay loam Btx2 horizon(more than 110 cm). That occurs on gently sloping lava plain and is derived from baslt materials. The typifying pedon has an argillic horizon from a depth of 32 to more than 110 cm and a fragipan from a depth of 57 to more than 110 cm. That has a base saturation (sum of cations) of 35% or more at 75 cm below the upper boundary of the fragipan. That can be classified as Alfisol, not as Inceptisol. The typifying pedon has udic soil moisture regime, and can be classified as Udalf. That has a fragipan with an upper boundary within 100 cm of the mineral soil surface, and keys out as Fragiudalf. Also that meets the requirements of Typic Fragiudalf. That has 18% to 35% clay at the particle-size control section, and has thermic soil temperature regime. Yongdang series can be classified as fine loamy, mixed, thermic family of Typic Fragiudalfs, not as fine loamy, mixed, thermic family of Aquic Eutrudepts.

Successful Management and Operating System of a UNESCO World Heritage Site - A Case Study on the Wadi Al-Hitan of Egypt - (유네스코 세계자연유산의 성공적인 관리와 운영체계 - 『이집트 Wadi Al-Hitan』의 사례 -)

  • Lim, Jong Deock
    • Korean Journal of Heritage: History & Science
    • /
    • v.44 no.1
    • /
    • pp.106-121
    • /
    • 2011
  • The number of World Natural Heritage Sites is smaller than that of World Cultural Heritage Sites. As of 2010, the total number of natural sites was 180, which is less than 1/3 of all cultural sites. The reason why the number of natural sites is smaller can be attributed to the evaluating criteria of OUV(outstanding universal value). Only 9 fossil related sites were designated as World Heritage Sites among 180 Natural Sites. This study compares their OUVs including the academic value and characteristics of the 9 World Heritage Sites to provide data and reference for KCDC(Korean Cretaceous Dinosaur Coast) to apply as a World Natural Heritage Site. This study was carried out to obtain information and data on the Wadi Al-Hitan of Egypt which was designated as a World Natural Heritage Site. The study includes field investigation for whale fossils, interviews of site paleontologists and staff, and inspections of facilities. Three factors can likely be attributed to its successful management and operating system. First, there is a system for comprehensive research and a monitoring plan. Secondly, experts have been recruited and hired and professional training for staff members has been done properly. Finally, the Wadi Al-Hitan has developed local resources with specialized techniques for conservation and construction design, which matched well with whale fossils and the environment at the site. The Wadi Al-Hitan put a master plan into practice and achieved goals for action plans. To designate a future World Natural Heritage Site in Korea, it is important to be recognized by international experts including IUCN specialists as the best in one's field with OUV. Full-time regular-status employees for a research position are necessary from the preparation stage for the UNESCO World Heritage Site. Local government and related organizations must do their best to control monitoring plans and to improve academic value after the UNESCO World Heritage Site designation. As we experienced during the designation process of Jeju Volcanic Island and Lava Tubes as the first Korean World Natural Heritage Site, participation by various scholars and specialists need to be in harmony with active endeavors from local governments and NGOs.

A petrological study on the formation of geological heritage around Sangjogam County Park, Goseong, Gyeongsangnam-do (천연기념물 제411호 경남 고성 덕명리 공룡화석 산지 일원 병풍바위의 형성에 관한 암석학적 연구)

  • Kong, Dal-Yong;Cho, Hyeong-Seong;Kim, Jae-Hwan;Yu, Yeong-Wan;Jung, Seung-Ho;Kim, Tae-Hyeong;Kim, Jong-Sun;Jeong, Jong-Ok;Kim, Kun-Ki;Kwon, Chang-Woo;Son, Moon
    • Korean Journal of Heritage: History & Science
    • /
    • v.51 no.2
    • /
    • pp.78-91
    • /
    • 2018
  • Sangjogam, located in Goseong, Gyeongsangnam-do, was designated as Natural Monument #411, because of its diverse geological heritage, such as fossils, ripple marks, dykes, and columnar joints. In the area, Byeongpungbawi, with its beautiful columnar joints vertical to the bedding plane of the underlying sedimentary rocks and spectacular coastal view, was named after its overall shape reminiscent of a huge folding screen. The purpose of this study was to investigate the formation process of the columnar joints using the anisotropy of magnetic susceptibility (AMS) method. AMS measurements showed that the k1 and k3 values representative of directions of the long and short axes of a magnetic particle at each point strongly clustered, and the oblate magnetic foliation structure in Byeongpungbawi developed during sill-type intrusion rather than lava flow. In summary, Byeongpungbawi was produced by sill-type intrusion along the bedding plane of the underlying sedimentary layer, and the subsequent formation of columnar joints was accompanied by the cooling and contraction of intruding rhyolite magma. This study potentially provides a basic research tool in understanding the formation mechanism of columnar joints which are widely distributed in southern Korea.

Initial Analysis of the Underground Air Among Jeju Lava Forest(Sumgol) and its Healing Effect on the Human Body (제주 현무암 '숲' 지하 공기(숨골: Sumgol)의 분석과 인체에 미치는 치유 효과)

  • Sin, SBangsik;Kim, Hyek Nyeon;Lee, Deok Hee;Kim, Tae Seung;Kim, Yong Hwan;Kang, Chang Hee;Song, Kyu Jin;Lee, Hyung H.
    • Journal of Naturopathy
    • /
    • v.11 no.1
    • /
    • pp.18-30
    • /
    • 2022
  • Background: It was to develop an air purification system (APS) using an underground air purification layer to verify the effect of basalt forest's underground air (sumgol) on a volcanic Jeju. Finally, it is necessary to analyze these purified air components and their usefulness to the human body in an air experience center. Purpose: It was to collect basalt forest air, analyze its composition, and explore its effect on the human body. Methods: We APS devices installed at four points in the Papaville area of Jeju. The air discharged from the APS was collected and analyzed the recycling components. An installed experience room filled with negative ions is about 5,000 ions/m3. After allowing the participants to stay for 60 to 120 minutes, we investigated the state of blood vessels. Results: In the analysis of the underground air, the O2 concentration was 21.18%, which was higher than the average oxygen concentration of 20.94% in the atmosphere. However, Formaldehyde was not detected, and the CO2 was 419 ppm, which was lower than that of indoor air. The PM2.5 concentration was less than 24 ㎍/m3 and detected anions over 5.000 /m3. The experiencer's vascular states improved, and the increase in pulse rate and stress relief were high. Conclusions: The valuable ingredients identified by analyzing the air were precious for natural healing. The experience results showed that it effectively improved the pulse rate, blood vessels, and stress. These conditions may be highly beneficial as a new area for expanding the basalt lava forest in the Jeju area into the natural healing and wellness industry.