• Title/Summary/Keyword: 용사분말

Search Result 91, Processing Time 0.022 seconds

Fabrication of Agglomerated Cr$_2$O$_3$ Powder for Plasma Spray Coating by Spray Drying Process (분무 건조법에 의한 프라즈마 용사를 Cr$_2$O$_3$조립 분말 제조)

  • 이동원
    • Journal of Powder Materials
    • /
    • v.5 no.1
    • /
    • pp.28-34
    • /
    • 1998
  • Plasma sprayed ceramic coatings are widely used in various industrial fields to improve their properties or to reduce the production cost. The ceramic powders for plasma spray coating have been mainly manufactured by spray drying or fused+crushed process. In this study, chromium oxide which has better mechanical properties than those of the other ceramic was selected and agglomerated chromium oxide powders for plasma spray coating were produced by spray drying process with a various processing condition. The large hollow powders and the harsh surfaced powders are formed at high slurry feed rate more than 163 g/min. and low binder concentration less than 2wt%, respectively. These powders cause the considerable decrease of flowability and apparent density. The powders produced by spray drying process have the spherical shape with the mean size of 45 ${\mu}m$, but these are shown lower apparent density and flowability than the powders produced by fused+crushed powders. The plasma spray coated layers by spray dried powders are shown a different microstructure with that by fused+crushed powders in porosity shape, but their properties such as density, hardness and bond strength are similar.

  • PDF

Porosity Prediction of the Coating Layer Based on Process Conditions of HVOF Thermal Spray Coating (HVOF 용사 코팅 공정 조건에 따른 코팅층의 기공도 예측)

  • Jeon, Junhyub;Seo, Namhyuk;Lee, Jong Jae;Son, Seung Bae;Lee, Seok-Jae
    • Journal of Powder Materials
    • /
    • v.28 no.6
    • /
    • pp.478-482
    • /
    • 2021
  • The effect of the process conditions of high-velocity oxygen fuel (HVOF) thermal spray coating on the porosity of the coating layer is investigated. HVOF coating layers are formed by depositing amorphous FeMoCrBC powder. Oxygen pressure varies from 126 to 146 psi and kerosene pressure from 110 to 130 psi. The Microstructural analysis confirms its porosity. Data analysis is performed using experimental data. The oxygen pressure-kerosene pressure ratio is found to be a key contributor to the porosity. An empirical model is proposed using linear regression analysis. The proposed model is then validated using additional test data. We confirm that the oxygen pressure-kerosene pressure ratio exponentially increases porosity. We present a porosity prediction model relationship for the oxygen pressure-kerosene pressure ratio.

Optical Properties of Spherical YAG:Ce3+ Phosphor Powders Synthesized by Atmospheric Plasma Spraying Method Appling PVA Solution Route and Domestic Aluminium Oxide Seed (PVA 용액법과 국산 산화알루미늄을 적용하여 대기 플라즈마 용사법으로 합성된 구형의 YAG:Ce3+ 형광체의 발광특성)

  • Yong-Hyeon Kim;Sang-Jin Lee
    • Journal of Powder Materials
    • /
    • v.30 no.5
    • /
    • pp.424-430
    • /
    • 2023
  • YAG phosphor powders were fabricated by the atmospheric plasma spraying method with the spray-dried spherical YAG precursor. The YAG precursor slurry for the spray drying process was prepared by the PVA solution chemical processing utilizing a domestic easy-sintered aluminum oxide (Al2O3) powder as a seed. The homogenous and viscous slurry resulted in dense granules, not hollow or porous particles. The synthesized phosphor powders demonstrated a stable YAG phase, and excellent fluorescence properties of approximately 115% compared with commercial YAG:Ce3+ powder. The microstructure of the phosphor powder had a perfect spherical shape and an average particle size of approx imately 30 ㎛. As a result of the PKG test of the YAG phosphor powder, the synthesized phosphor powders exhibited an outstanding luminous intensity, and a peak wavelength was observed at 531 nm.

Characteristics of (Ca,Sr)-doped LaCrO3 Coating Layer for Ceramic Interconnect of Solid Oxide Fuel Cell (고체산화물 연료전지용 (Ca,Sr)도핑된 LaCrO3계 세라믹 연결재 코팅층의 특성 연구)

  • Lee, Gil-Yong;Peck, Dong-Hyun;Song, Rak-Hyun
    • Journal of the Korean Electrochemical Society
    • /
    • v.8 no.4
    • /
    • pp.162-167
    • /
    • 2005
  • Using Pechini method, we synthesized the $La_{0.6}Ca_{0.41}CrO_3$ (LCC41) and $La_{0.8}Sr_{0.05}Ca_{0.15}CrO_3$ (LSCC) powders for slurry dip coating, and $La_{0.75}Ca_{0.27}CrO_3$ (LCC27) powder for air plasma spray coating. The sintering property of the powders and their coating properties were investigated. The average particle sizes of the LCC41, LSCC, LCC27 were 0.6, 0.9, $1.5{\mu}m$, respectively. The relative density of LCC41 bulk was to be found about 98%. The LSCC coating on anode support prevented Ca migration of the coated LCC41 on the anode some or less, which was confirmed from EDS result. The air plasma spray-coated LCC27 with the dip-coated LCC41 were more dense and showed better electrical conductivity than those of the air plasma spray-coated LCC27 and the dip-coated LSCC and LSCC41. The LCC41 and LCC27 showed good electrical conductivities, but the LSCC had a poor electrical conductivity probably due to low sinterability

A Study on Durability Characteristics for Plungers of Conventional Ceramic and Surface Modification by Powder Coating Using High Velocity Oxygen Fuel Thermal Spray (기존 세라믹 및 초고속 용사 분말피막 표면개질 플런저의 내구성 특성에 관한 연구)

  • Bae, Myung-whan;Park, Byoung-ho;Jung, Hwa
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.24 no.3
    • /
    • pp.285-293
    • /
    • 2016
  • The high velocity oxygen fuel(HVOF) thermal spray is a kind of surface modification techniques to produce the sprayed coating layer. This process is to form the coating layer after spraying the powder to molten or semi-molten state by the ultra-high speed at the high-temperature heat source and conflicting with a substrate. The efficiency of thermal spraying is dropped, however, because the semi-molten powder in a spray process become a factor that degrades the mechanical property by the formed pore within the coating layer. Therefore, it is necessary to melt completely the thermal spray powder in order to produce the coating layer with an optimal adhesive force. In this study, to improve the wear resistance, corrosion resistance and heat resistance, the plungers of high-speed and ultra-high pressure reciprocating hydraulic pumps used in ironworks are manufactured with STS $420J_2$ and are coated by the powders of WC-Co-Cr and WC-Cr-Ni including the WC of high hardness using a HVOF thermal sprayer developed in this laboratory. These are called by the surface-modified plungers. The surface roughness, hardness, and surface and cross-sectional microstructure of these two surface-modified and conventional ceramic plungers are measured and compared before operation with after operation for 100 days. It is found that the values of centerline average surface roughness and maximum height for conventional ceramic plunger are 9.5 to 10.8 and 5.2 to 5.7 times higher than those of surface-modified ones coated by WC-Co-Cr and WC-Cr-Ni because the fine tops and bottoms on surface roughness curve of conventional ceramic plunger are approximately 100 times higher than those of surface-modified ones. In addition, the pores and scratches in the surface microstructure are considerably formed in the order of conventional ceramic, WC-Cr-Ni and WC-Co-Cr surface-modified plungers. The greater the WC content of high hardness powder is less the change in the plunger surface.

Development of Amorphous Iron Based Coating Layer using High-velocity Oxygen Fuel (HVOF) Spraying (철계 비정질 분말을 활용한 초고속 용사 코팅층 개발)

  • Kim, Jungjoon;Kim, Song-Yi;Lee, Jong-Jae;Lee, Seok-Jae;Lim, Hyunkyu;Lee, Min-Ha;Kim, Hwi-Jun;Choi, Hyunjoo
    • Journal of Powder Materials
    • /
    • v.28 no.6
    • /
    • pp.483-490
    • /
    • 2021
  • A new Fe-Cr-Mo-B-C amorphous alloy is designed, which offers high mechanical strength, corrosion resistance as well as high glass-forming ability and its gas-atomized amorphous powder is deposited on an ASTM A213-T91 steel substrate using the high-velocity oxygen fuel (HVOF) process. The hybrid coating layer, consisting of nanocrystalline and amorphous phases, exhibits strong bonding features with the substrate, without revealing significant pore formation. By the coating process, it is possible to obtain a dense structure in which pores are hardly observed not only inside the coating layer but also at the interface between the coating layer and the substrate. The coating layer exhibits good adhesive strength as well as good wear resistance, making it suitable for coating layers for biomass applications.

Improvement of Powder Feeding Characteristics of Fine$5\mu\textrm{m}$ $Al_2O_3$ Powder by Modification of the Powder Feeding Systems and Characterization of the Coating Layer depending on Plasma Spraying Conditions (분말송급장치의 개조에 의한 미세$5\mu\textrm{m}$ $Al_2O_3$분말의 송급 특성개선 및 플라즈마 용사조건에 따른 코팅층의 특성분석)

  • 설동욱;김병희;정민석;임영우;서동수
    • Journal of Welding and Joining
    • /
    • v.15 no.1
    • /
    • pp.116-124
    • /
    • 1997
  • A scope of this study is to establish the optimum plasma spray conditions for fine ($5\mu\textrm{m}$) $Al_2O_3$ powder. However, the flowability of the $Al_2O_3$ powder is not so good because of irregular particle shape and fine particle size. Therefore, powder feeding system was modified by 1) change of powder feeding line material from polymer to copper 2) shorten the powder feeding tube length 3) heating the powder feeding system to $80^{\circ}C$4) vibrating the powder feeding line continuously, in order to feed the fine powder homogeneously. The homogeneous powder feeding conditions were obtained with the modified powder feeding system by controlling the powder carrier gas flow and the powder flow rate indicator. The best plasma spraying conditions for the fine $Al_2O_3$ powder were found out as 40kw gun power, 80 g/min. powder feed rate and 50 mm working distance after characterizing the microstructure, hardness and wear loss of the $Al_2O_3$ coating layer.

  • PDF

Effect of Post-heat Treatment on Fatigue Strength of Thermally-Sprayed Stellite Alloy on Steel (스텔라이트 합금 용사 코팅의 피로 강도에 미치는 후열처리의 영향)

  • Oh Jeong Seong;Komotori Jun;Rhee Chang Kyu
    • Journal of Powder Materials
    • /
    • v.12 no.2 s.49
    • /
    • pp.106-111
    • /
    • 2005
  • The effect of post-heat treatment on the coating characteristics and the fatigue strength of the gas flame thermally sprayed Stellite alloy coatings on $0.35\%$ carbon steel were investigated. The fatigue fracture surfaces of the heat treated samples were observed using SEM (Scanning Electron Microscopy). For as-sprayed samples, there was considerable scattering in the fatigue life due to the presence of the pores in the coating. After the post-heat treatment to improve the microstructural characteristics of the coating layer, the fatigue strength of the specimens was greatly improved, increasing with increasing the coating thickness. For the specimens with the 0.3mm and 0.5mm thick coating, the fatigue cracks originated in the substrate region just below the interface. On the contrary, for the specimens with the 1.0mm thick coating, they nucleated at the pore within the coating, and the fatigue strength was 2.6 times higher than that of the substrate due to the high fatigue resistance of the coating.

Microstructure and Tribological Properties along with Chemical Composition and Size of Initial Powder in Fe-based BMG Coating through APS (대기 플라즈마 용사공정을 이용한 Fe계 벌크 비정질 금속 코팅의 초기 분말의 화학조성과 크기에 대한 미세 조직 및 마모 특성)

  • Kim, Jung-Hwan;Yoon, Sang-Hoon;Na, Hyun-Taek;Lee, Chang-Hee
    • Journal of the Korean institute of surface engineering
    • /
    • v.41 no.5
    • /
    • pp.220-225
    • /
    • 2008
  • In this study, two kinds of Fe-based bulk metallic glasses (BMG) powder were built-up through atmospheric plasma spray (APS) technique. The microstructure of two coatings was analyzed through X-ray diffraction, scanning electron microscopy and transmission electron microscopy. Crystallization and oxidation in coatings were affected by chemical composition and initial powder size. Then, both of them influenced the tribological property.

Optimization of the Plasma Spray Coating Parameters of Ni-5%Al Alloy Powder Using the Taguchi Experimental Method (다꾸찌방법에 의한 Ni-5%Al 합금 분말의 플라즈마 용사코팅 조건의 최적화)

  • 이형근
    • Journal of Welding and Joining
    • /
    • v.20 no.5
    • /
    • pp.120-126
    • /
    • 2002
  • Ni-5%Al alloy powder is widely used as the bond coating powder to improve the adhesive strength between the substrate and coating. The important properties in the bond coating are the deposition efficiency and surface roughness. In this study, it was tried to optimize the plasma spray parameters to maximize the deposition efficiency and surface roughness. In the first step, spray current and hydrogen gas flow rate were optimized in order to increase the deposition efficiency. In the next step, the seven plasma spray variables were selected and optimized to improve both the deposition efficiency and surface roughness using the Taguchi experimental method. By these optimization, the deposition efficiency was improved from about 10 % at the frist time to 51.2 % by the optimization of spray current and hydrogen gas flow rate and finally to 65.2 % by the Taguchi experimental method. The average surface roughness was increased from about $12.9\mu\textrm{m}$ to $15.4\mu\textrm{m}$.